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Abstract
Anoptical vortexwith orbital angularmomentum (OAM) enriches the light andmatter interaction
process, and helps reveal unexpected information in relativistic nonlinear optics. A scheme is
proposed for the first time to explore the origin of photons in the generated harmonics, and produce
relativistic intense harmonics with expected frequency and an optical vortex.When two counter-
propagating Laguerre–Gaussian laser pulses impinge on a solid thin foil and interact with each other,
the contribution of each input pulse in producing harmonics can be distinguishedwith the help of
angularmomentum conservation of photons, which is almost impossible for harmonic generation
without an optical vortex. The generation of tunable, intense vortex harmonics with different photon
topological charge is predicted based on the theoretical analysis and three-dimensional particle-in-cell
simulations. Inheriting the properties ofOAMand harmonics, the obtained intense vortex beam can
be applied in awide range offields, including atomormolecule control andmanipulation.

1. Introduction

The vortex beam exhibiting a helical wavefront can be applied as a powerful probing tool in studying cold atoms,
atomic transition [1–7], design and operation ofmicromachines [8], optical communications and quantum
space [9–11] and even astrophysics [12]. Such a beam can even transfer orbital angularmomentum (OAM) to
material particles, rotate them, ormanipulate their vortex characteristics when the intensity is sufficiently high.
Recent researches have proved its possible usage in particle acceleration [13], and the vortex beams can be
amplified and generated to petawatt intensities in plasmas through stimulated Raman backscattering [14]. The
helical characteristic of a vortex beam is described by the phase component of exp(ilf), wheref is the azimuthal
coordinate and the integer number l is the topological charge [15–17]. Different values of lmean that the photon
has different vortex characteristics and carries differentOAMs.Owing to the limitation of the etching resolution,
it is difficult to obtain a vortex beamof high topological charge through conventionalmethods such as forked
diffraction gratings [18, 19] or spiral phase plates [15]. There have been some efforts, such as the use of a helical
undulator [20–22], Compton backscattering effects [23, 24], and high-order harmonics generation (HHG)
[25–28], devoted to generating a light beamwithOAM.Among them, theHHG scheme has an extraordinarily
promising perspective because of the confluence ofOAMandHHG, and experimental results have been
demonstrated [26, 28]. In the previousHHG scheme, one incident pulse is used, and only certain topological
charges of theHHGare generated and cannot be tuned. Thus, the applicationwill be inevitably limited to some
extent when a light beamwith a specificOAMand frequency is required.

In this paper, we present a newway to generate tunable intense vortex beams of high topological charge from
laser-plasma interactions, inwhich the frequency andmode of the radiation harmonics can be tuned tomeet
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different requirements.More importantly, this is the first attempt to determine the origin of photons of the
generated harmonics through the coupling process of high harmonics. In this scheme, two counter-propagating
intense driving vortex beamswith low topological charges impinge on a thin foil. Due to their interaction in the
foil, high-order harmonics are radiated on both sides.With the help of a photon vortex, the contribution of
input pulses in producing harmonics can be distinguished. The topological charge and order of harmonics can
be designed by adjusting the parameters of the input pulses, which promisesmore possibilities with an
additional pulse comparedwith the case of a single driving pulse.

Comparedwith thewell-known gasHHG sources, the present scheme is in the relativistic (>1018 W cm−2)
laser plasma interaction range. Using plasma as themode-converter, the intensity of the vortex beam can be
increased by several orders ofmagnitude comparedwith that of the gasHHG scheme, inwhich it is impossible to
generate such an intense vortex beambecause of the limitations (often below 1015–16 W cm−2) of the laser
intensity to avoid strong ionization. The generationmechanism in the present scheme is independent of the
input laser polarization state, which is different from that in our previous study, inwhich the high order vortex
beam is obtained from the oscillating foil surface by using a linearly polarized laser pulse [27]. Here, the high
harmonics with largeOAMare radiated from the oscillating electrons, which arewell confined by the two pulses,
andmost importantly, the two laser pulses allow better flexibility in the sense of generatingOAM.Themode can
be tuned by adjusting the driving pulses individually, thereby satisfying different requirements.

2. Theoretical analysis

The proposed scheme is shown infigure 1. Two counter-propagating circularly polarized (CP) Laguerre–
Gaussian (LG) laser pulses a1 and a2 with the same rotation directions (both left handed or right handedCP)with
frequencies and topological charges of (n1ω, l1) and (n2ω, l2), respectively, irradiate on a thin foil. For this
scheme, electrons are pushed inside fromboth sides of the foil and arewell confinedwithin the foil by the
radiation pressure. High harmonics are generated from the oscillating electrons. The foil is thinner than the skin
depth to ensure full interaction of the two pulses inside the target. This is not the first timeHHGhave been
producedwith two pulses [29, 30], however, LGpulses bring the high topological charge of harmonics, which is
ourmain focus. To overcome the drawback of the limitedmultiplication factorwith a single frequency
conversion, the use of beam-echo effect induced by an additional laser beamhas been foundmore efficiently in
theHHGgeneration [31, 32]. Herewith the similarmotivation, themain focus is that the high topological
charge concerning to the largeOAMcan be tunable. The normalized vector potential (a=eA/mec

2, whereA is
the vector potential, c is the light speed in vacuum,me is the electronmass, and e is the electron charge) of the
laser amplitude inside of the electron layer can bewritten as
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where a1 and a2 are used as
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for simplicity, since only phase terms are concerned, where a0 is the normalized vector potential. The electron
transverse velocity is ν=a/γ, which is the source term and contributes to the nonlinearity inMaxwell’s
equation

Figure 1. Schematic of the proposed scheme. Two counter-propagating CPLG laser pulses a1 and a2 with frequencies and orders of
(n1ω, l1) and (n2ω, l2), respectively, irradiate on a thin foil (n1=1, l1=1, n2=2, and l2=2).
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where γ=(1+a2)1/2 is the relativistic factor, ν is normalized to the light speed c and n is the electron density.
We only analyze the source term to interpret the dominant source of harmonics generation and the
corresponding phase termswhich originates from the electronmovement under thefield inside the foil, rather
than an exact solution for all physical variables. From the Fourier expansion of this source term,we can see that it
contains the following components:
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where nm1(2) and lm1(2) are the order and topological charge of generated harmonics and
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andm=0, 1, 2,K. From equation (1), two kinds of harmonics carrying the frequency andOAM information
of the input pulses are generated, i.e., the nm1 order harmonics with a topological charge of lm1 and the nm2 order
harmonics with a topological charge of lm2 can be obtainedwith this regime. Based on this, it can be concluded
that a vortex beamwith a specific topological charge and frequency can be obtained by combining the four given
variables n1, n2, l1, l2 tomeet different requirements.

Considering photons in the nonlinear process of the present scheme, for the nm1 order harmonic, each
photon carries an energy nm1ħω. For the input pulses without helicity, it is difficult to distinguish where the
generated harmonic photons originate fromor howmany photons of pulse a1 and a2 are consumed in the
nonlinear process. This is because the photons of two pulses cannot be distinguished completely just according
to the energy conservation depending solely on the photon frequency. That is, one cannot determine the exact
values ofX,Y just fromXn1ħω+Yn2ħω=nm1ħω, whereX,Y are the photon numbers frompulse a1 and pulse
a2. However, when the photons of the input pulses have vortex properties, i.e., theOAM in the present scheme,
there is an additional freedomdegree l. According to theOAMconservationXl1ħ+Yl2ħ=nm1ħ, we can easily
deduce that one photon of the nm1 order harmonic is transformed from (m+1) photons of pulse a1 and (m)
photons of pulse a2. Similarly, one photon of the nm2 order harmonic is transformed from (m) photons of pulse
a1 and (m+1)photons of pulse a2. It is samewith the sum frequency generation in nonlinear optics. From
equation (1), it can be seen that the harmonics of nm1 and nm2 ordermaintain the same rotation direction as
pulse a1 and a2, respectively, whichmeans all helicities of photons including spin (polarization) [33] and orbit
are conserved in this nonlinearHHGprocess. Using the helicity of the optical vortex in the present scheme, apart
from the generation of the tunable, intense high-order optical vortex beam,we can determine the process that
the photons undergo during the generation of different order harmonics, which is helpful to understand this
nonlinear process in plasma.

3. Three-dimensional PIC simulations

To confirm the above analysis, three-dimensional (3D) particle in cell (PIC) simulations have been performed.
We carried out all simulations using EPOCHcode [34]. The driving LGbeam is described as
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The left pulse a1 has a frequency ofω corresponding to thewavelength ofλ=1 μmand the right pulse a2
has frequency of 2ω corresponding to thewavelength ofλ/2=0.5 μm. r0=6 μm, and t0=5T are used for the
two pulses, whereT is the left driving laser period. The topological charges of the a1 and a2 pulses are l1 and l2,
respectively. For the left pulse, laser wavelength ofλ=1 μm, a0=5 corresponds to a peak electric field
intensity of 9.6×1012 Vm−1. The same peak electricfield for the right laser pulse is used. The thin foil with the
thickness of 0.1 μmas the nonlinear converter occupies the region 9.95 μm<x<10.05 μmin the propagation
direction of the driving beam and−13.5 μm<y(z)<13.5 μm in the transverse directionwith a density of
n0=20nc, where nc=1.1×1021 cm−3 is the critical density for the left laser pulse. The simulation box is
20 μm (x)×30 μm (y)×30 μm (z), and corresponds to awindowwith 1000×400×400 cells and 100
particles per cell for the foil. At t=0, the laser pulses enter the simulation box fromboth boundaries.

The isosurface distribution of the laser electric field and the thin foil density in this simulation are shown in
figure 1. Figure 2 shows the frequency spectrumof thewhole laser field including the reflected and transmission
parts, which shows that each third harmonic (3th, 6th,K) ismissing. Herewe note the amplitude of twin
harmonics (1st& 2nd, 4th& 5th, and 7th& 8th) are almost equal because of the same intensity of the both pulses
a1 and a2. According to equation (2), for n1=1, n2=2, the frequency spectrumof the generated harmonics
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only contains (3m+1)ω and (3m+2)ω, whichwell explains the spectrum in the simulation.Most
importantly, the corresponding topological charges of these harmonics are (m+1)l1+ml2 and
ml1+(m+1)l2, whichmeans that the topological charges of the generated harmonics 1, 2, 4, 5, 7, 8,K,

Figure 2. Frequency spectrumof the laserfield after interaction between the input pulses and thin foil. The field signal at y=5 μm
and z=0 μmis used. The peak electricfield intensity is 9.6×1012 V m−1 for both input pulses.

Figure 3.Electric field isosurface of the (a), (g)first, (d), (j) second, (b), (h) fourth, (e), (k)fifth, (c), (i) seventh, and (f), (l) eighth
harmonics within a 1 μmdistance in the propagating direction after the interaction in the case of (a)–(f) l1=1, l2=2 and (g)–(l)
l1=−1, l2=2.
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(3m+1), (3m+2) should be l=1, 2, 4, 5, 7, 8,K, (3m+1), (3m+2) for l1=1, l2=2, and l=−1, 2, 0, 3,
1, 4,K, (m−1), (m+2) for l1=−1, l2=2. Figures 3 and 4 show the electric field isosurface of different order
harmonics within onewavelength of the left pulse (1 μm) for the cases of l1=1, l2=2 and l1=−1, l2=2, and
the corresponding transverse electric field distribution in the same y-z plane after the laser foil interaction. From
these structures in thefigures, thewavelength, helicity, and topological charge of the harmonics can be seen
clearly, and are in good agreement with the theoretical analysis results. For example, the clear LG80-likemode is
obtained, inwhich each photon has anOAMof 8ħ and the peak electric field intensity is of 1011 V cm−1 in the
case of l1=1, l2=2. It should be noted that in the case of l1=−1, l2=2, thefield in the center of the fourth
harmonics is close to zero due to the similar intensity distribution of the both input source fields, although its
topological charge is l=0.

We should note that the resolution in the x direction is not enough for the high order harmonics (>10th)
with the present resolution, but it is enough for the lower order harmonics. The results are in good agreement
with the theoretical analysis. Actually, when the resolution is doubled, even the higher order harmonics (10th
and 11th) are clearer, besides the loworder ones.

4.Discussion

The normal incidence of two beams has been analyzed to show themain idea clearly. In the perspective of the
experimental setup, the influence of the incident angle on the vortex beam generation should be considered.

Figure 4.Electric field distribution of the (a), (g)first, (d), (j) second, (b), (h) fourth, (e), (k)fifth, (c), (i) seventh, and (f), (l) eighth
harmonics in the z-y plane at x=4 μmafter the interaction in the case of (a)–(f) l1=1, l2=2 and (g)–(l) l1=−1, l2=2. Thefield is
normalized tomeωc/e (4×1012 V m−1).
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Figures 5(a) and (b) show the laser electricfields before and after the interactionwith the thin foil when the right
laser pulse irradiates obliquely with the incident angleα=π/64. In this case, the electric field Ey after the
interaction carries on the influence of the incident angle. Different wave fronts of a2 cross the y-axis at different
places, and this forms a sinusoidal profile with thewavelength ofλ/(2 sinα) along y that represents the phase,
whereλ/2 is thewavelength of the laser a2. Therefore, the ky component (wave vector in the y direction) of a2 in
the case of oblique incidence results in the distortion of thewave fronts of the reflected beam. And the distortion
grows strongwith the incident angle. Considering the small influence brought by the ky component of the
incident beam, inwhich the field of ky component of a2 is weak and does not interrupt the information of
harmonics along x-axis, it is better to drive the beam at a small angle. In this case, the harmonics and their
corresponding topological charge keep almost the samewith the results of the normal incidence case as shown in
figures 5(c) and (d), except for little influence on the phase changewithin one loop shown infigures 5(e) and (f).

In the example above, the two driving CP pulses have the same rotation directions. In the case of the counter-
rotation directions, the topological charge and order of harmonics can also be determinedwith the same
analyticalmethod, that is, for the (m+1)n1(2)−mn2(1) order harmonic, the topological charge is (m+1)l1(2)
−ml2(1). For n1=1, l1=−1 and n2=2, l2=2, the harmonic order and its corresponding topological charge
are 1, 2, 3, 4, 5,K, (m+1) and−1, 2, 5, 8, 11,K, (3m−1), which is confirmed by our simulations.
Interestingly, for the counter-rotation case, one photon of the (m+1)n1(2)−mn2(1) harmonic is transformed
from (m+1) photons of a1(2), and at the same timem photons of a2(1) are generated, whichmay be annihilated
during the other order harmonics process. Different from the sum frequency generation process in the same-
rotation case, this is a difference frequency generation process. In addition, CP laser pulses are used as the
example to distinguish theHHG in terms of the oscillatingmirrormodel, inwhich the neither of the CP lasers
would produce harmonics by itself, Actually, the present scheme is effective even for linearly polarized lasers,
and high harmonics with different topological charges are generated.

The vortex beamwith high topological charge opens awide range of applications, since a new freedom
degree, i.e., OAM, is included. According to equation (2), the topological charge of the high order harmonics can
be further increasedwhen the vortex beamswith high charge acquiredwith this scheme or others [14, 27, 35] are
input. LargeOAMcanmake a hugemechanical torquewhen it interacts withmatter, and help to control and
manipulatemicro-particles. The circular or elliptical polarization laser pulse as a chiroptical characterization
tool has been applied in probing chiralmolecules during the gasHHGprocess [36, 37]. The generation of a
much stronger and tunable infrared vortex laser provides an alternative tool with a new freedomdegree. The
new freedomdegreewill also help to understand the nonlinear physical process, such as the transformation of
photonswith different topological charge in the process ofmultiple frequency generation and sumor difference
frequency generation, especially when two ormore pulses are involved. Inspired by the amplification and
generation of the intense twisted laser pulses via stimulated Roman scattering [14], researchers expect tofind
more optical-parametric-like process when such beams interact with some chiralmaterials.

Figure 5.Electric field distribution in the y-x plane at z=0 μmbefore (a) and after (b) the interaction between the laser pulses and
thin foil in the case of l1=1, l2=2. Electricfield isosurface of the (c) 2nd and (d) 4th harmonics within a 1 μmdistance in the
propagating direction after the interaction. Electric field distribution of the (e) 2nd and (f) 4th harmonics in the z-y plane at x=4 μm
after the interaction. The field is normalized tomeωc/e (4×1012 V m−1) and the right laser pulse propagates at an angle ofα=π/64.
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5. Conclusion

In conclusion, a new scheme to obtain tunable intense high-order vortex beams in the high frequency region
from laser plasma interaction is proposed, and it provides an approach to produce the vortex beamwith a
specificOAMand frequency as expected. For the first time the additional freedomdegree gives us insight into
the photon process and helps determine the origin of harmonics photonwhen two pulses are involved. Both
theoretical analysis and 3DPIC simulations have confirmed the generation of high harmonics carrying large
OAMwhen two counter-propagating intense driving vortex beams interact in a thin foil. The topological charge
and order of harmonics can be predicted by adjusting the input pulses. Corresponding experimental research is
expected based on thewell-developed solidHHGdiagnostics [38–44].
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