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Vortex waves, which carry orbital angular momentum, have found use in a range of

fields from quantum communications to particle manipulation. Due to their widespread

influence, significant attention has been paid to the methods by which vortex waves are

generated. For example, active phased arrays generate diverse vortex modes at the cost

of electronic complexity and power consumption1–4. Conversely, analog apertures, such as

spiral phase plates1,5, metasurfaces6, and gratings7 require separate apertures to generate

each mode. Here we present a new class of metamaterial-based acoustic vortex generators,

which are both geometrically and electronically simple, and topologically tunable. Our

metamaterial approach generates vortex waves by wrapping an acoustic leaky wave antenna8

back upon itself. Exploiting the antennas frequency-varying refractive index, we demonstrate

experimentally and analytically that this analog structure generates both integer, and non-

integer vortex modes. The metamaterial design makes the aperture compact and can thus

be integrated into high-density systems.

The total angular momentum of a system can be divided into two components, spin

angular momentum, and orbital angular momentum (OAM). Although acoustic waves do

not possess spin angular momentum they have been shown to carry OAM1,2. A drawing

of a single mode helical wave with value L = −2 is shown in Fig. 1(a) where L is the

OAM topological mode number. A wave with OAM index L= 0 describes a system with

no helical phase front. The phase front of the propagating wave is a corkscrew-type phase

advance with the sign of the topological charge positive, for clockwise rotation, or nega-

tive, for counter-clockwise rotation. These vortex waves have been found to be useful in

an extremely diverse range of applications from communications6,9–13 and imaging14–16 to

particle manipulation17–19over a wide range of length scales. In the most widely exam-

ined application, vortex waves have been harnessed for use in electromagnetic and quantum
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communications.

The importance of both topological diversity, and aperture simplicity in vortex mode

generation becomes immediately evident when considering the applications of vortex waves.

The limitations of existing techniques preclude their use in important applications such as

communications, which requires both rapid switching between mode-diverse orthogonal sig-

nals, and micro-manipulation, which benefits from compact, simple apertures for large-scale

integration. In an effort to address these shortcomings, a recent optical approach utilized

scattered whispering gallery modes and demonstrated the ability to generate multiple elec-

tromagnetic vortex modes.11,20. This approach allowed for fast switching of mode value by

tuning the refractive index of the emitter to generate a range of whole integer topological

values. Here, we show that it is possible, by incorporating sub-wavelength metamaterial

elements, to further reduce the relative aperture size while also achieving both integer and

fractional vortex modes. Fractional vortex modes further increase vortex wave potential

applications as they have been of interest for particle manipulation21 and edge-detection

imaging22.

Inspired by recent research on acoustic leaky-wave antennas8,23, we present an air-acoustic

vortex beam emitter which generates topologically diverse vortex waves using a single trans-

ducer coupled to a single analog metamaterial aperture. A leaky wave antenna is a device

comprised of a one-or two-dimensional waveguide which leaks power along it’s length with

either a continuous leaking slot or sub-wavelength radiating shunts. Leaky wave antennas

rely on geometry-controlled dispersion to tune the refractive index of the fluid inside the

waveguide. The leaked energy then refracts from the antenna at an angle θ(ω), similar

to the refraction mechanism of a prism. The value of θ(ω) is determined by the ratio of
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wavenumber β(ω) inside the waveguide to the wavenumber in the surrounding area k24

θ(ω) = arcsin (
β(ω)

k
). (1)

Although not included in this study, acoustic leaky wave antennas can be designed with

negative refractive indices23.

Using the simple leaky wave aperture, we have realized a versatile, multi-mode vortex

wave antenna by wrapping the linear antenna waveguide back on itself. Consistent with Huy-

gens’ Principle, the planar wavefront emitted by a straight leaky waveguide is wrapped into

a helical phase front, as illustrated in Fig. 1(b). By then sweeping through frequency within

the waveguide, the wavefront angle, θ(ω), changes, resulting in distinct vortex wavefronts.

The realized aperture geometry is shown in Fig. 1(c) and consists of a circular waveguide

beneath an array of radially aligned shunts, as well as input and output ports that couple

acoustic radiation into the annular region. The resulting continuous, as opposed to discrete,

dispersion relation facilitates non-integer mode generation.

The confinement of the waveguide in the radial (r̂) and axial(ẑ) directions imposes con-

straints that determine the dispersion relation as a function of frequency. In order to solve

for the dispersion, it is convenient to use a coordinate transformation31, u = b ln(r/b) and

v = bφ, that unwraps the circular annulus in cylindrical coordinates (r, φ, z) to form a linear

cartesian waveguide with coordinates (u, v, z). After applying the coordinate transform, the

wave equation in the plane formed by the annulus becomes,

∂2Ψ

∂u2
+
∂2Ψ

∂v2
+ k2(ω) exp(u/b)

[
exp(u/b)− iα(ω)

k(ω)b

]
Ψ = 0 (2)

where Ψ(u, v) is the acoustic pressure in the polar plane, bis a scaling parameter of the

transform, k(ω) = ω/c is the unconstrained wavenumber in air, and α(ω) depends on the

geometry, impedance, and axial confinement of the waveguide. Further details of the analytic
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model, which takes into account the cumulative end corrections of all shunts, can be found

in the supplementary materials. The solutions to Eq. (2) include a phase term exp(iLφ),

where the topological mode L is fixed by the radial and axial boundary conditions and

is radially independent, advancing the phase uniformly at all radii inside the waveguide.

We emphasize that L does not depend on the choice of b; the physics of the propagation

around the annulus cannot change with the scale of the transformation. The utility of the

scaling parameter b is to determine both the dispersion relation β(b, ω) = L(ω)/b and the

radiation angle θ(b, ω) = arcsin[β(b, ω)/k] at a particular radius r = b inside the waveguide.

Traditionally the scaling parameter b has been chosen to represent the centroid of the radial

part of the solution Ψ(r, φ)31; thus one can define a centroid propagation angle based onthis

choice. For a given geometry, L is spatially independent and only depends on frequency;

the frequency dependence of L can be tuned by changing the confinement geometry of the

waveguide (radial or axial) and/or the shunt geometries.

Using the theory described above, a vortex wave antenna geometry was chosen which is

capable of generating at least 7 distinct, orthogonal vortex modes. Finite element meth-

ods (FEM) were used to predict the OAM phase topology of each mode, and the design

geometry was verified by successful experimental demonstration of the radiated mode. The

predicted phase profiles at four frequencies corresponding to whole integer modes are shown

in Fig. 2(a).

The realized vortex wave antenna was fabricated and characterized. Figure 2(b) shows

the measured phase topology of 7 modes, extracted from the measured pressure fields, cor-

responding to L = −3 through L = +3. This general design proves extremely versatile.

For example, using the same unit cell geometry shown in Fig. 1 and simply changing the

aperture’s radial midpoint, Rm, an entirely new set of mode values are realized. This de-

5



sign flexibility opens the door to vortex beam multiplexing by designing an aperture with

multiple concentric waveguides resulting in a multiplexed beam, ideal for high-speed com-

munications applications. Additionally, the versatility of the design space enables tailoring

of the aperture radius to be either scaled down even further in size, or increased to minimize

vortex beam divergence.

To quantify the momentum mode number of each mode, the phase of the radiated beam

has been mapped onto a circle whose axis is concentric with the antenna axis at r=0. The

corkscrew wavefront of the radiated beam carries the OAM of the waveguide’s dispersion,

with phase exp(iLφ). Thus for a value of L, the phase of a vortex beam will cycle L times

through 2π around the circumference of the axis-concentric circle. Figure 2(c) shows the

phase of the radiated beam on a circle of radius r=0.1 m.

The phase at each frequency in the band from 1.8 kHz to 6.3 kHz is unwrapped by adding

multiples of 2π at each phase value of -π and integrated along a closed path to determine

the total change in phase, ∆Φ, as a function of frequency. The experimentally obtained

values of ∆Φ are shown as red circles in Fig. 3(a) and are observed to discontinuously

jump between integer plateaus. This metric indicates that unlike the predicted continuous

monotonic change in the topological mode within the waveguide, the mode numbers of

the radiated vortex waves are only observed at discrete integer values. This result, while

seemingly paradoxical, is in agreement with previous theoretical and experimental results

demonstrated for electromagnetic (EM) vortex waves26,27.

Fractional ordering of the topological modes can instead be observed in the vorticity

structure of the radiated beam27. Integer modes have no phase discontinuity around the

annulus (see Fig. 2(b))and are expected to produce a single radiated vortex, with an accom-

panying null in amplitude (see Fig. 4(a)), that is centered on the beam’s axis. Fractional
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modes, on the other hand, result in multiple observed vortices, with associated nulls in am-

plitude, centered around the beam axis27. The number of vortices arising from a fractional

topology is given by the closest integer to L, and are predicted to increase discontinuously

when L=N + 1/2, where N is an integer.

As the phase approaches a half-mode, a radially-oriented line of vortex pairs (and asso-

ciated nulls) appears in the radiated beam profile26,27. This pattern can be observed in the

measured phase and amplitude profiles as a dislocation in the wavefront, shown in Fig. 3(b)

for L=−1.5 and L=−3.5 at frequencies where the unwrapped phase is observed to transi-

tion between integer modes. The introduction of these fractional modes can be seen in the

supplementary material. Since these vortex pairs are equal in magnitude but have opposite

signs, summation along a closed path leads to no net contribution to the total vorticity. As

the value of L increases beyond a half integer, one of these line vortices breaks off to to form

the next higher integer vortex singularity in the cluster, while the others disappear27. It has

been theoretically predicted that in free space this should lead to a rapid jump from one

integer mode to the next, which is in excellent agreement with the observed experimental

results obtained using the unwrapped-phase metric presented in Fig. 3(a). This fractional

effect, in which a dislocation in the wavefront appears, has also been described as an ana-

log to the Aharonov-Bohm effect with a flux line consisting of wavefronts along a nodal

surface.27,28

Inspection of the amplitude nulls in Fig. 4(a) indicates that multiple vortex singularities

are also present at the frequencies which predict integer values for the cases of L = ±2

and ±3. Finite element simulation indicates that this apparent fractional topology is a

result of the aperture design, where the input and output ports cause the design to be

missing a wedge compared to a perfect circle. The missing wedge acts as an effective phase
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discontinuity at the aperture, which produces a beam profile that appears to result from

a fractional phase dispersion. With an ideal design in which the input and output ports

are removed and a continuity condition placed on the wrapped waveguide, perfect integer

modes would be achievable. We emphasize that the ideal vortex wave antenna concept (with

continuity condition) is capable of generating not only whole integer modes, but fractional

vortex modes as well (observed in Fig. 3(b)), which have found a myriad of uses in their

own right.

Since mode orthogonality is vital for many applications of vortex waves including high-

speed communications and imaging, the covariance matrix of the measured modes was cal-

culated. Figure 4(a) shows the measured intensity (‖p‖2) distributions for the L = 0, ±1,

±2, and ±3 modes. The covariance matrix of the measured modes is plotted in Fig. 4(b).

The details of the calculation can be found in the supplementary materials. The covariance

matrix shows that despite the lack of symmetry in the mode shapes, each mode distribution

is highly uncorrelated with the others, indicating a high degree of orthogonality.

Our acoustic vortex wave antenna approach offers an extremely compact method to emit

vortex modes with the diameter of the aperture being the size of the wavelength of excita-

tion at the highest frequency examined. The small, electronically and geometrically simple

device makes this vortex wave antenna ideal for both scaling, and for integration into sys-

tems requiring a large number of vortex beams. Acoustic OAM waves have already shown

usefulness in micromanipulation, such as an acoustic tractor beam, and for fluid mixing.

Although these concepts can be also achieved using optical vortex beams, acoustic parti-

cle manipulation has advantages over optical manipulation in that it gives the ability to

manipulate both larger objects and non-magnetic or non-conducting materials29,30.
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SUPPLEMENTARY MATERIAL

I. MATERIALS AND METHODS

Finite element simulations (FEM) of the vortex wave were performed using COMSOL

multiphysics. The FEM used a circular waveguide with geometry indicated. The boundary

conditions on the waveguide were rigid in the radial direction and a continuous radiation

condition was imposed on the exit port of the waveguide. In order to be consistent with the

geometry realized experimentally, a wedge of the waveguide was removed corresponding to

the input and output ports in the fabricated system. The circular waveguide aperture is fed

via the input port using an omnidirectional source. This was simulated in the finite element

model using a source signal in the form of a continuous wave at constant amplitude. Perfect
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absorbing conditions were mandated at the exit port of the waveguide to prevent reflection.

Mode chirality was tuned by switching the location of the source between input and output

ports.

The leaky wave aperture was fabricated using additive manufacturing in two pieces as

indicated in Figure 1. The dimensions were chosen to provide an antenna which would have

the best performance at the frequencies for which the transducers had optimal performance.

Soft putty was used to seal the top and bottom plates and prevent sound leakage. The

aperture design incorporates an input/output waveguide. The omnidirectional sound source

was coupled into this waveguide using a 1 m long pipe in order to mitigate the effects of

reflection. The output port was filled with sound-absorbing foam. The source profile was an

linear frequency modulated (LFM, or chirped) pulse. The LFM pulse was 6ms in duration

and windowed with a Hanning envelope function. The LFM pulse was a linear ramp of

frequencies from 1kHz to 10kHz (generated with the MATLAB chirp and hann functions).

This waveform was digitized with a Agilent 33220A waveform generator and fed to a Dayton

Audio CE32A-8 speaker. Efforts were made to mitigate reflection in the radiation area by

using anechoic foam. A microphone (Breül and Kjær 4939-A) mounted on an automated

two-dimensional positioning system was used to map the emitted intensity and phase profile

above the aperture. Multiple 10ms long waveforms were collected and averaged together

to fully capture the 6ms LFM, accounting for waveguide dispersion and collection time of

flight. As in the simulated result, chirality was varied by switching input and output ports.

In all predicted and measured phase and intensity plots the aperture is centered on in the

image. The phase and intensity profiles are mapped at a plane parallel to the surface of

the aperture over an area of 0.16 m2 square and at a height of 0.05 m from the top of the

aperture.
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II. VORTEX LEAKY WAVE ANTENNA: ANALYTIC MODEL

A. Introduction

The circular acoustic leaky wave antenna (LWA) is designed using a ring antenna archi-

tecture in cylindrical coordinates. Our design assumes propagation around an annular ring

in the azimuthal φ̂ direction, with waveguide confinement in the radial r̂ and axial ẑ direc-

tions. There are quasi-radiating boundaries at the input/output ports of the ring (Fig. 1(C)

of the main text) that allow an acoustic wave to adiabatically enter and leave the circular

waveguide with minimal reflection (to first order). Therefore, for purposes of an analytic

approximation we assume no confinement in the azimuthal direction. The wave equation in

cylindrical coordinates is,

1

r

∂

∂r

(
r
∂P

∂r

)
+

1

r2

∂2P

∂φ2
+
∂2P

∂z2
+ k2P = 0 (3)

where P (r, φ, z) is the acoustic pressure and k = ω/c0 is the wavenumber in air. We assume

an acoustic wave of the form P̃ exp(iωt− i~k~·x) such that a negative imaginary wavenumber

results in loss. The annular waveguide has acoustic shunts in its upper axial plane that allow

the acoustic wave to radiate in the positive ẑ direction. The shunts have rectangular cross-

section but are aligned along the radial direction and have a constant azimuthal spacing φa.

The dimensions of the acoustic shunts and waveguide are given in Table I.

The waveguide’s cross-sectional dimensions are smaller than the acoustic wavelength

λ ' 43 mm at the highest experimental frequency of 8 kHz. Therefore we expect a sin-

gle propagating mode, confined in the r̂ and ẑ directions, that traverses the circular LWA in

the φ̂ direction. The LWA will radiate a vortex wave that is dependent on the topological

charge L(ω), which indexes the orbital angular momentum of the waveguide’s azimuthal

mode. One must solve Eq. 3 under the confinement constraints of the waveguide in order
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to estimate the frequency dependence of the topological charge.

B. Solutions to the Cartesian Coordinate Transform

To solve for the dispersion relation of the annular propagation, we employ a coordinate

transformation that has been successfully applied to electromagnetic ring resonators31, u =

b ln(r/b) and v = bφ, with z unchanged. Here b is a scaling parameter that has units

of radius. The transformation maps the cylindrical annulus to a linear cartesian waveguide

with coordinates (u, v, z). Under this coordinate transformation the wave equation becomes,

∂2P

∂u2
+
∂2P

∂v2
+ exp(2u/b)

∂2P

∂z2
+ k2 exp(2u/b)P = 0. (4)

Using separation of variables P (u, v, z) = F (u, z)G(v) we assign a plane wave solution

G(v) = C exp(iβv)+D exp(−iβv) to describe the propagation along the (transformed) linear

waveguide, where the propagation constant β defines the radiation angle in the transformed

Parameter Value (mm) Description

lSh 19.7 Shunt length in r̂ direction

wSh 1.7 Shunt width in φ̂ direction

hSh 12.7 Shunt depth in ẑ direction

Ri 17.3 Inner radius of Shunt/Waveguide

Ro 42.7 Outer radius of Shunt/Waveguide

Rm 30.0 Midpoint radius of Shunt/Waveguide

d 6.5 Waveguide height in ẑ direction

a 6.7 Shunt spacing at Ro in φ̂ direction

TABLE I. Dimensions of the leaky wave antenna.
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system. The wave equation now becomes,

∂2F

∂u2
+ exp(2u/b)

∂2F

∂z2
+
[
k2 exp(2u/b)− β2

]
F = 0. (5)

An exact solution F (u, z) to Eq. 5 is not separable due to the radial dependence of our

shunt geometry; however, one can exploit the subwavelength scale of the axial confinement

to derive an approximate solution that is separable. We assume that F (u, z) = ψ(u)χ(z)

with χ(z) = B cos (γz) under the condition that γd� 1. Note that d is the maximal value of

z in the waveguide and the rigid lower boundary is placed at z = 0. Under this assumption

the confinement parameter γ can be written as,

γ '

√
ikwSh
φad

Z0

ZSh(ω)

1

b exp(u/b)
, (6)

which can be derived from the impedance boundary condition of the shunts at the axial

upper boundary (z = d). Here ZSh(ω) is the acoustic impedance of an individual shunt and

Z0 is the impedance of air. Although γ depends explicitly on u, it is easy to show that the

non-separable terms in Eq. 5 are proportional to (γz)2 and are therefore negligible in the

limit γd� 1. In this limit the wave equation can be written as,

∂2ψ

∂u2
+

{
k2 exp(u/b)

[
exp(u/b)− iα(ω)

kb

]
− β2

}
ψ = 0, (7)

α(ω) =
wSh
φad

Z0

ZSh(ω)
. (8)

After applying rigid boundary conditions at ui(Ri) and uo(Ro), and transforming back

to cylindrical coordinates, the solution to Eq. 7 in the plane of the ring is,

Ψ(r, φ) = ψ(r)G(φ) = ArL exp[±iLφ− ikr] (Ω[µ, 2L+ 1, 2ikr] + ξΛ[−µ, 2L, 2ikr]) , (9)

µ = (2L+ 1 + α) /2, (10)

where Ω[µ, 2L+1, 2ikr] is the confluent hypergeometric function, Λ[−µ, 2L, 2ikr] = Λ2L
−µ(2ikr)

is the generalized Laguerre polynomial, and L = βb is the topological charge. The parameter

13



ξ defines the proportionality between Ω[...] and Λ[...], is L-dependent but spatially inde-

pendent, and is derived from the radial boundary conditions. The topological charge L is

invariant under the choice of b, and is spatially independent for a given waveguide geometry.

L indexes the azimuthal phase in the same manner as the Bessel order in the solution to the

unconfined cylindrical wave equation, except that here L can take on non-integer values.

C. Impedance of the shunts

The acoustic impedance of each shunt is determined from the dynamic mass response of

its internal air column, viscous end corrections at the openings, and mass end corrections due

to radiation from the shunt and its neighbors. The internal mass response is proportional

to the shunt depth hSh
32,

Zh = iωρ0hSh

[
1− tanh(s

√
i)

s
√
i

]−1

(11)

s = wSh

√
ωρ0

η0

(12)

where η0 is the dynamic viscosity of air. The viscous and mass end corrections are discussed

at length by Ingard33. The viscous end correction can be approximated as32,33,

Zv =
√

8η0ωρ0. (13)

The mass end corrections Ze,i can be calculated using a double integration over the cross-

sectional area of the shunt and its neighbors34,

Ze,i '
iωρ0

2πlShwSh

∫
A

∫
A′

eikR
′

R′
dA′dA (14)

where Ze and Zi are impedance corrections at the external and internal ends of the shunt,

respectively. Here dA is an infinitesimal area element of the shunt’s cross-section, dA′ is a
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cross-sectional area element of the shunt or its neighboring shunts, and R′ is the displacement

between elements dA and dA′34. The total shunt impedance is then the series combination

of each component, ZSh = Zh + Zv + Ze + Zi.

The double integral in Eq. 14 is intractable for a rectangular cross-section, and series

approximations have been carried out by Ingard33. We use numerical integration to estimate

Ze,i, where the integration is carried out over all 35 shunts for the external end correction

while the internal correction includes only the nearest and second-nearest neighboring shunts.

The integral in Eq. 14 is multiplied by a phasing function exp(iΦ) for each neighbor that

approximates the phase change around the ring, where the value of Φ is estimated from the

measured topological charge at a given frequency. Additionally, mirror reflections from the

rigid boundaries inside the waveguide will result in virtual neighbors; we include the first set

of these virtual neighbors (one above Ro and one below Ri) in the estimate of the internal

end correction.

As the curvature of the waveguide grows, direct displacement vectors between shunts in-

side the waveguide will become disrupted by the waveguide’s walls, resulting in displacement

vectors involving multiple reflections. Given that the displacement R′ for reflected vectors

is highly sensitive to the wall curvature, and that the phase Φ is not constant around the

ring, we assume that the contributions of multiple internal reflections from distant neighbors

will largely cancel out. Therefore, there is some amount of error in choosing the number of

shunts to include in the calculation of the internal end correction. The near field corrections

due to neighboring shunts become stronger at lower frequencies, approaching a magnitude

similar to Zh at frequencies below L = 1; therefore the uncertainty is strongest at these

frequencies.
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III. CALCULATION OF SPATIAL MODE ORTHOGONALITY

The following procedure was used to compute the spatial mode covariance matrix. This

is a measure of the spatial mode orthogonality. The norm of each mode, Nm, was computed

using the Fourier transformed pressure time series data, p(x, t)35:

∫
Ω

Pm(x, f)P ∗m(x, f)dΩ ≡ Nm (15)

where Pm is the Fourier transform of the collected time series data, the mode number

m = −3,−2,−1, 0,+1,+2,+3 was selected at discrete frequencies, f , guided by the spiral

wave condition m = 2πβr of Fig. 3 in the main text. Ω is the sample plane of the mode

distribution, and P ∗ indicates complex conjugation. The covariance between two separate

modes, m, and n is given by:

Cmn =

∫
Ω

1√
Nm

Pm(x, f)
1√
Nn

P ∗n(x, f)dΩ (16)

and were approximated with the discrete formulation:

Cmn '
1

M

M∑
j=1

1√
Nm

Pm(xj, f)
1√
Nn

P ∗n(xj, f) (17)

with j indexing each position in the collected sample planes. A discrete Fourier transform

was used to calculate the complex frequency domain pressure amplitudes and phases. Suf-

ficient padding was added to the 7ms, Tukey windowed time series data sets to create a

∆f = 25Hz. The full results of the pressure and phase evolution as a function of frequency

can be found in the animations included in the supplementary materials.
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FIG. 1. Schematic of acoustic vortex wave antenna: (a) Illustration of a propagating vortex wave,

and the resulting vortex constant phase contours in a plane parallel to the aperture. The arrows

correspond to the wavenumber vectors which have both vertical, and radial components. (b) A

one-dimensional leaky wave antenna can be converted to a vortex wave antenna by wrapping the

waveguide back on itself. At normal incidence, excited by frequency f1, the OAM mode is zero,

with no helicity. Increasing the input frequency to f2 produces an angled wavefront which wraps

to a helical vortex beam. (c) Exploded-view drawing of the acoustic vortex wave antenna (all

dimensions in mm). The input signal goes through one side of the waveguide and the radiated port

is fully absorbing to prevent reflections. Inset: detail of shunt geometry.
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FIG. 2. Finite element simulated (a) and measured (b) phase distributions of OAM waves with

topological charges ranging from -3 to +3: The various charges were generated using a single

metamaterial aperture by insonifying the aperture at discrete frequencies. All measurements were

taken at a distance of h from the surface of the antenna, where h 50 mm. The evaluated frequncies

are 1.8kHz, 2.8kHz, 4.1kHz and 5.45kHz. (c) The method for determination of mode magnitude

consists of counting the number of phase fronts which cross a circle that is co-axial with the

aperture. The circle, defined on the measurement plane in (a) and (b), is shown in (c, far right).

Phase magnitude, collected from the simulated data in (a), is shown with the number of phase

fronts indicated by red symbols.
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FIG. 3. Comparison of calculated and measured modes (a), and measured fractional modes (b):

(a) Calculated mode value (blue lines). Integer values of L were chosen from the experimental

emitted spectrum of the aperture. Measured integer modes are indicated as discrete yellow x-marks,

while fractional values are indicated as filled circles. The horizontal lines correspond to (red) the

measured mode number determined by phase unwrapping, (black-dashed) theory rounded to the

nearest integer, consistent with mode determination set up by Berry27. (b) Measured pressure

(left) and phase (right) amplitudes at frequencies representing fractional vortex values of -1.5 and

-3.5.
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FIG. 4. Measured mode intensities and calculated orthogonality: (a) Measured acoustic intensity

plots of L = 0, ±1, ±2, and ±3 modes measured respectively at frequencies 1.8kHz, 2.8kHz, 4.1kHz

and 5.45kHz. Arrow indicates input port direction for the top and bottom rows. (b) Symmetric

mode orthogonality matrix for all L modes shown in (a).
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