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Abstract: We report the realization of spin-dependent splitting of vector abruptly 
autofocusing beam (AAB) by encoding cosine-azimuthal variant phases. By employing the 
local spatial frequency (LSF), we reveal an approximation mapping relationship between 
focal field intensity of the two spin components and the pertinent phase distribution of input 
field. As well as theoretical analysis, we present experimental demonstrations of this 
guidance. Special focal field intensity, polarization and phase are realized by consciously 
managing the cosine-azimuthal variant phase. This distinctive focal field of vector AAB may 
have a broad range of applications in harnessing the spin-orbit coupling, optical trapping and 
laser machining. 
© 2016 Optical Society of America 
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1. Introduction 

The focusing properties of light fields, as one of the most important aspect of light 
propagation, have always been playing an important role in the practical applications of 
optics. In the past decades, the focusing engineering of light fields has been investigated 
extensively in various realms [1–5]. Recently, the abruptly autofocusing beam (AAB) has 
emerged as an unusual approach to deliver drastically enhanced intensity with small spot size 
on a remote target. Such an interesting AAB was firstly proposed theoretically by Efremidis 
et al. [6] and demonstrated experimentally by Papazoglou et al. [7]. The abrupt intensity 
increase without any lens or nonlinearity makes the AAB an ideal candidate to deliver high 
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energy without damaging the material before the focus, which has a variety of applications in 
guiding micro-particles [8], light bullets [9,10] and spin-orbit coupling [11]. 

Ring Airy beams, i.e., the beams with circularly symmetric Airy radial amplitude, are the 
first AAB to be studied, which can produce fascinating behaviors such as parabolic trajectory, 
diffraction-resisting and transverse acceleration [12–14]. The manipulation on the 
autofocusing property of ring Airy beams by modulating the initial phase distribution has 
been theoretically and experimentally demonstrated. For instance, the focal distance and size 
of the focus spot are adjustable via attaching vortex phases [15–17], and spiral autofocus 
occurs via encoding a power-exponent-phase vortex phase [18]. Besides the scalar fields, 
steering the abruptly autofocusing property of ring Airy beam based on the modulation of 
polarization has also attracted rapidly growing interests [11]. It is well known that, the 
focusing properties of vector fields with inhomogeneous polarization distributions have been 
extensively investigated [19–26], and demonstrated that they are of interest for applications in 
high resolution optical microscopy [27], optical manipulation [28,29], angular measurement 
[30], quantum information [31] and optical communication [32]. The AAB possessing 
inhomogeneous polarization distributions has exhibited interesting spin-orbital angular 
momenta interaction and polarization singularities conversion [11]. Hence, as we can see, by 
simultaneously modulating initial phase and polarization distributions of AABs, it is possible 
to produce high energy focal field with special spin angular momentum (SAM) and orbital 
angular momentum (OAM) distributions, which may be used in applications including optical 
detection of chiral particles [33], spin-orbital optical interaction [11,34], reconfigurable 
dynamical intensity optical trap [35], laser medical treatment and laser machining [6,7]. 
However, the joint effect of polarization and phase distribution on the focal field of AAB is 
still scarce. 

In this paper, we simultaneously employ cosine-azimuthal variant phase and second order 
vector polarization distributions to steer the spin-dependent splitting of AAB in the focal 
field. The vector AAB with cosine-azimuthal variant phase can be decomposed into two spin 
components, i.e., left- (LH) and right-handed (RH) circular polarizations, with diverse initial 
phase. Based on the local spatial frequency (LSF) of the two spin components, an 
approximation mapping relationship between focal field intensity and initial phase of the two 
spin components is predicted. Furthermore, by setting the cosine-azimuthal variant phase 
parameter, the spin-dependent splitting and carried OAM in the focal field can be controlled. 

2. Theory analysis 

For a cylindrically polarized AAB with cosine-azimuthal variant phase, the complex vector 
field can be described as 

 ( ) ( ) ( ) ( ) ( )0 0 0, cos sin exp cos .r E r m m i nϕ ϕ ϕ ϕ ϕ ϕ= + + +  E x y  (1) 

where E0(r) = Ai[(r0-r)/ω]exp[α(r0-r)/ω], Ai(·) denotes the Airy function, r is the radius, r0 is 
the radius of primary ring, ω is a scaling factor and α is the exponential decay factor; m is the 
polarization order of cylindrical vector beam; φ is the azimuthal coordinate; φ0 is the initial 
polarization direction for φ = 0; n is the cosine-azimuthal variant phase parameter; x and y are 
the unit vector along the x and y axes, respectively. To analyze the focal field properties of the 
vector AAB, we resort to its Fraunhofer diffraction field. For simplicity, we firstly decompose 
such a light field into two spin components. Hence, the field expressed by Eq. (1) can also be 
denoted as 

 ( ) ( ) ( ) ( ){ }0 0 0, exp cos exp cos / 2,r E r i m n i m nϕ ϕ ϕ ϕ ϕ ϕ ϕ= − + − + + +      E L R (2) 
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where L and R denote the unit vectors of LH and RH circular polarizations, respectively. 
Thereby, the far-field envelope of the vector AAB can be described by Fresnel integration in 
cylindrical coordinates as [25,36] 

 

( ) ( ) ( ){

( ) } ( )

2

0 0

2

0

1
, , exp exp cos

22 2π

cos
exp cos exp exp d d

2

ik
U z E r i m n

zi z

ikrpikr
i m n r r

z z

ρρ φ ϕ ϕ ϕ
λ

ϕ φ
ϕ ϕ ϕ ϕ

 
= − + − +    

 
−  

+ + −      
   

 L

R               

(3) 

where (ρ,φ,z) are the cylindrical coordinates, k = 2π/λ is the wavenumber and λ is the 
wavelength. Under the modulation of the cosine-azimuthal variant phase factor exp(icosnφ), 
it is difficult to deduce a closed-form expression to describe the focal field intensity 
distribution. Nevertheless, we can obtain the focal field intensity distribution by numerically 
integrating Eq. (3). 

Like any other cases, the numerical simulation cannot delineate the focal field intensity 
distribution with a clear analytic expression. In order to consciously manage the focal field, it 
is urgent to develop a brief tenet for guiding the management. Recently, several works have 
reported that the LSF can be used to depict the focal field intensity distribution [18,37]. The 
LSF can be obtained by the Fourier integral with the method of stationary phase and is 
defined as [38] fx = (1/2π)∂ψ/∂x, fy = (1/2π)∂ψ/∂y, where ψ is the phase distribution of the 
input field (E(r,φ)), (fx,fy) is the orthogonal coordinates in frequency domain. Here, we adopt 
the LSF to establish a simple mapping relationship between focal field intensity and the 
pertinent phase distribution of input field. When the vector AAB is encoded with cosine-
azimuthal variant phase, the LSF (fx,fy) of LH and RH circular polarization components of 
field described in Eq. (2) can be easily calculated in accordance with the definition. Here, in 
order to present a concise form of the LSF, we give the LSF expressions (fρ) in polar 
coordinates as follows 
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For intuitively presenting the relationship between the LSF distribution of the two spin 
components and the phases carried by them, it needs to take the parity of phase parameter n 
into consideration. First, for an odd number of n, i.e., n = 2k + 1, k is an integer, Eqs. (4a) and 
(4b) can be written as 

 ( )1
: 1 cos ,

2π

k
f m n n

rρ φ= + −L   (5a) 

 ( )1
: 1 cos .

2π

k
f m n n

rρ φ= + −R   (5b) 

Clearly, the LSF distributions of LH and RH circular polarization components share the 
identical closed-form expression, which leads to the LSF distributions of the two spin 
components exhibiting the same profile. 
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Next, when n = 2k, Eqs. (4a) and (4b) evolve into 

 ( )1
: 1 cos ,

2π

k
f m n n

rρ φ= + −L   (6a) 

 ( ) 11
: 1 sin .

2π

k
f m n n

rρ φ+= + −R   (6b) 

Due to the complementarity of trigonometric functions, it is clear that the LSF distributions of 
LH and RH circular polarization components are spaced from each other along azimuthal 
coordinates for an even number of n. Based on this, we can make the LH and RH circular 
polarization components separate from each other along azimuthal coordinates, which 
indicates the azimuthal spin-dependent splitting. 

As for the influence of polarization order m on the LSF distribution, it is quite clear and 
definite. If m>n, there is no null point in frequency domain for LSF. If m≤n, the zero points 
are determined by the period of the sinusoidal or cosine function and they intersect at the 
original point in frequency domain. 

Based on the above mentioned discussions, we can consciously design the intensity and 
polarization distributions of focal field under the guiding of LSF. It should be stressed that, 
the LSF actually just delineates the geometrical shape of intensity distribution rather than 
quantify the density of intensity distribution in the focal plane. Under the effect of transverse 
energy flux arising from the OAM and encoded phase terms, both for the two spin 
components, the intensity distribution of the two spin components predicted by the identical 
LSF distribution may be different. According to Eq. (5), due to the φ is equal to φ-π/2 and φ + 
π/2 for the LH and RH circular polarization components, the modulus fρ of the two spin 
components begins differently in the azimuthal direction. Besides, the sign of operation is 
opposite in the modulus fρ, we can obtain the conclusion that the modulus fρ increases toward 
opposite sense along the azimuthal direction. Ultimately, the intensity distributions of the two 
spin components are symmetric about x axis but may not overlap with each other completely, 
which results in a spin-dependent splitting along y axes. 

3. Simulation results 

To corroborate the mapping relationship between LSF and the geometrical shape of the focal 
field intensity distribution, we depicts the focal intensity distribution obtained from Eq. (3) 
and LSF distribution of two spin components in Fig. 1. Since the polarization order m does 
not influence on the azimuthal distribution of LSF distribution, as an example, the 
polarization order of vector AAB beam is selected as m = 2 for different phase parameters (n 
= 1, 2, 3, and 4) with φ0 = 0. In our numerical simulation, the radius of the primary ring r0 and 
scaling factor ω are selected as 52 μm and 5.4 μm, respectively. 

Figure 1 shows the total focal field intensity I0, the intensity of LH (IL) and RH (IR) 
circular polarization components, the contour lines of LSF distributions of LH and RH 
circular polarization components (the dashed curves in the second and third columns of Fig. 
1), as well as the corresponding phase distribution illustrated in the insets. Where the azury 
solid point (M-point) within each contour line denotes the original point of the curve in 
Cartesian coordinate system. According to the geometric mapping relationship, the M-point 
of LSF correspondingly map to the centroid of the focal intensity distribution. Clearly, the 
focal field intensity distributions of constituent beams (IL and IR) agree with the delineations 
of LSF distributions (dashed curves). 

When the phase parameter n is odd, such as n = 1 or 3, the LSF distributions of the two 
spin components have identical spatial distribution. As pointed out at the end of Section 2, 
the transverse energy flux also has influence on the density of intensity distribution in the 
focal plane. For instance, when n = 1, due to the fact that the two spin components have 
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opposite transverse energy flux (for more details about the energy flow in the focal field of 
vector beam, see ref [23].), the intensity distribution along the LSF profile is non-uniform. 
Although IR and IL distributions are symmetrical about x axes, they would not overlap with 
each other completely. This results in a spin-dependent splitting along y axes. However, when 
n = 3, the LSF distributions present three-fold rotational symmetry, which are similar to three-
leaved rose curves. Correspondingly, the intensity distributions (I0, IL, IR) are like clover. 
Although the two spin components still move toward opposite sense along the azimuthal 
direction starting from φ = 0, it covers three periods in a circle from φ = 0 to φ = 2π instead of 
one period for n = 1. This guarantees that the two spin components ultimately coincide with 
each other and no spin-dependent splitting occurs. Further, we can find that, the peripheral 
intensity distributions of two spin components are opposite along the azimuthal coordinate, it 
is an intuitive display of the opposite transverse energy flux [23]. 

 

Fig. 1. Simulation intensity distributions of vector AAB with polarization order m = 2 and 
different phase parameters n in the focal plane. The first column denotes the total intensity (I0); 
the second and third columns denotes the intensity of LH (IL) and RH (IR) circular polarization 
components. The insets represent the phase profiles. The dashed curves in second and third 
columns denote the LSF distributions. 

When the phase parameter n is even, such as n = 2 or 4, the LSF distributions of the two 
spin components separate from each other along the azimuthal coordinate. To quantitatively 
describe the splitting distance of the spin components, we define a parameter Φ to denoting 
the angular separation of the adjacent two spin components along the azimuthal direction. In 
the case of n = 2, the LSF distributions are like Bernoulli’s lemniscate, one is along diagonal 
direction and the other is along the anti-diagonal direction. That is to say, they are spaced 
along the azimuthal coordinate and the total intensity (I0 = IL + IR) distribution of focal filed 
present a central lobe and four petals around it. In this case, the angular separation Φ = π/2. In 
the case of n = 4, the LSF distributions present four-fold rotational symmetry and the LSF of 
the two spin components are separated from each other along the azimuthal coordinate. It 

                                                                                           Vol. 24, No. 25 | 12 Dec 2016 | OPTICS EXPRESS 28414 



resembles the four leafed rose, of which the longer regions denote the null intensity areas. 
Here, the angular separation Φ = π/4. Generally, for n = 2k, the angular separation of the 
adjacent two spin components is Φ = π/n, which is actually equal to the period of the modulus 
fρ. Thus, when the phase parameter n of the input field is set as an even number, an azimuthal 
spin-dependent splitting can be realized. Eventually, the total intensity distribution of focal 
field forms a full circle. Interestingly, the phase of the total focal field when n = 4 has a 
typically spiral structure, which is similar to a second-order vortex beam. 

By means of the mapping relationship between LSF and geometrical shape of the focal 
field intensity distribution, we can consciously control the spin-dependent splitting and phase 
distributions of vector AAB by changing the phase parameter n of the encoded cosine-
azimuthal variant phase. By employing spatial light modulator, it is easy to imprint desired 
phase distributions with computer generated hologram (CGH) onto the input field. 

4. Experiment results and discussions 

Figure 2 illustrates the sketch of the experimental setup. A linearly polarized He-Ne laser (λ = 
632.8 nm) beam is spatially filtered and collimated by the combination of microscopic 
objective (MO1) and lens (L1). The polarization direction of the collimated beam can be 
rotated by the half-wave plate (λ /2). Then, the beam is divided by a beam splitter BS1 into 
two parts. The reflected one is orderly reflected by the reflection mirrors M1, M2, M3 and BS2, 
which is set as a reference beam to interfere with the modulated input beam for retrieving the 
phase distribution of the focal field. The transmitted one is modulated by the phase spatial 
light modulator (PSLM) (Holoeye LETO) and polarization conversion system (PCS) to 
generate the desired input field. The microscopic objective MO2 is used to magnify the focal 
field. For the generation of the vector AAB with cosine-azimuthal variant phase described by 
Eq. (1), the CGH encoded on the PSLM is shown in Fig. 2(a) with intensity distribution 
written as t(x,y) = |E0(r)exp(icosnφ) + exp(ifx)|2, where f is the spatial frequency of the CGH. 
After reflected from the PSLM, the desired beam (shown in Fig. 2(b)) is then spatially filtered 
by a filter (F) in the first diffraction order of a 4f imaging system (consisting of lens L2 and 
L3). Next, the generated AAB is relayed to the PCS to realize the polarization conversion, 
where a liquid-crystal polarization converter (q-plate) with order q = 2 (Thorlabs, WPV10-
633) is placed at the image plane of the PSLM as the PCS to generate vector AAB with 
polarization order m = 2. 

 

Fig. 2. Schematic of experimental setup. MO: microscopic object; L: lens; λ/2: half-wave plate; 
BS: beam splitter; PSLM: phase spatial light modulator; F: filter; PCS: polarization conversion 
system; M: mirrors; CCD: charge coupled device. The insets: (a) CGH and (b) corresponding 
intensity distribution behind lens L3. 

Figure 3(a) shows the simulated intensity distribution according to Eq. (1) of a vector 
AAB with polarization order m = 2 and phase parameter n = 1. Experimentally, we record the 
generating vector AAB by a CCD camera closely behind the PCS. Figure 3(b) displays the 
intensity distribution without a polarization analyzer. To analyze the polarization state of the 
generated field, we rotate the polarization analyzer with the transmission axis at 0°, 45°, 90°, 
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135° angles with respect to the horizontal direction. The corresponding intensity distributions 
behind the polarization analyzer are depicted in Figs. 3(c)-3(f). The results are in good 
agreement with the theoretical analysis as indicated by the green double-headed arrows in 
Fig. 3(a). It should be pointed out that the phase parameter n does not influence on the 
polarization 

 

Fig. 3. (a) Simulated and (b) experimentally measured intensity distributions of the vector 
AAB with polarization order m = 2 and phase parameter n = 1. (c)-(f) experiment results of the 
generated vector AAB after passing through a polarization analyzer with the transmission axis 
denoted by white double-headed arrows within a dashed circle. 

 

Fig. 4. Experimentally measured intensity distributions of vector AAB with polarization order 
m = 2 and different phase parameters n at the focal plane. The first column denotes the total 
intensity (I0); the second and third columns denotes the intensity of LH (IL) and RH (IR) 
circular polarization components. 
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distribution of the input field, that is to say, when n = 0, 2, 3, and 4, the input intensity 
distributions without or with the polarization analyzer is the same as the case of n = 1. 

Figure 4 shows the experimentally measured intensity distribution of total focal field and 
the two spin components, in the focal plane, when the input field is encoded with different 
phases. The intensity distribution of LH and RH circular polarization components are 
measured by the combination of a quarter wave plate, a polarizer and a CCD camera. The 
experimental results agree with the simulated results shown in Fig. 1. It should be pointed out 
that the non-uniformity of the intensity distribution of the two spin components is caused by 
the inhomogeneous transmittance of quarter wave plate due to the manufacturing error. 

It is well known that the distributions of Stokes parameter S3/S0 (s3) can be used to depict 
the circular polarization degree [39]. Hence, we employ the s3 to denoting the spin-dependent 
splitting in the focal field of vector AAB. As usual, the s3 can also be measured by using a 
typical setup consisting of a quarter wave plate, a polarizer and a CCD camera. In the next, 
the polarization and phase distribution characteristics of the focal field are analyzed. 

 

Fig. 5. Distributions of Stokes parameter s3 of the vector AAB with polarization order m = 2 
and phase parameters (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4 at the focal plane. The insets 
depict the corresponding intensity distributions. (e) Theoretical polarization state distribution 
arising at the focal plane of vector AAB with phase parameter n = 4, the red and blue ellipses 
corresponding to RH and LH circular polarizations, respectively. (f) Interference pattern 
between a spherical wave and the focal field of the vector AAB with phase parameter n = 4. 
The dashed black curves denote the LSF distributions. Φ denotes the angular separation of the 
adjacent two spin components. 

To verify the spin-dependent splitting predicted by the LSF distribution, we give the LSF 
distribution (dashed black curves) and s3 of the focal field as follows. Experimentally, the 
measured angular separation Φ is equal to the angle between the two lines starting from the 
center and passing respectively through the maximum of the intensity for one of the two 
components as illustrated in Fig. 5(d). In Fig. 5(a), for n = 1, the focal field presents a giant 
spin splitting which is similar to photonic spin Hall effect of fan-shaped cylindrical vector 
beam occurring at the focus [36]. As stated in the previous section, the intensity distributions 
IR and IL are symmetrical about x axes, which results in LH and RH circular polarization 
components splitting along y axes. The angular separation of the adjacent two spin 
components is about Φ = π. In the case of n = 2, the center of the focal field is linearly 
polarized, and two LH circular polarization lobes are focused along the diagonal direction 
while two RH circular polarization lobes are focused along the anti-diagonal direction as the 
LSF indicates as shown in Fig. 5(b). The angular separation of the adjacent two spin 
components is about Φ = π/2. The total intensity pattern presents a center lobe surrounded by 
four side lobes, which align along the LSF distributions of the two spin components. In the 
case of n = 3, the total focal field intensity distribution presents three main lobes which are all 
linearly polarized. It demonstrates the theoretic prediction that the spin-dependent splitting 
does not occur. Note that, three spin pairs are around the three main lobes as shown in Fig. 
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5(c), which denotes the peripheral intensity of the two spin components. In the case of n = 4, 
as indicated by the LSF distribution (for better visibility, we leave out longer regions of LSF), 
the LH and RH circular polarizations are spaced from each other along the azimuthal 
coordinate and completely compensated resulting in the formation of a full circle. As shown 
in Fig. 5(d), the s3 distribution actually presents an azimuthal spin-dependent splitting, which 
is similar to the focal field polarization distribution where the azimuthally polarized beam 
modulated by multi-azimuthal masks [26]. In this case, the angular separation of the adjacent 
two spin components is about Φ = π/4. As we can see, except for the experimental 
imperfections caused by the manufacturing error of the quarter wave plate, the experimentally 
measured angular spin splitting agrees with the theoretical prediction. Our main interest 
focuses on the spin-dependent splitting phenomena, the quantitative description of spin 
splitting presented here is just expected to provide an intuitively impression. 

According to the experimentally measured s3 distribution as shown in Fig. 5(d), the 
theoretic polarization state distribution is depicted in Fig. 5(e), which presents azimuthal 
variant polarization states and forms azimuthal SAM gradient. It should be stressed that this 
azimuthal SAM gradient cannot trigger the occurrence of OAM. As has been demonstrated in 
[28,40], only the radially variant vector field and SAM gradient can generate OAM without 
spiral phase. However, as the prediction of the theory analysis, for second order (m = 2) 
vector AAB with n = 4, the phase of the focal field forms a spiral structure, which is similar 
to the second-order vortex beam. In order to confirm this spiral phase structure, we 
experimentally introduce another reference beam to interfere with the focal field. Since the 
focal field is too small to be directly observed in our implementation, we introduce a 
microscopic objective MO2 to magnify the focal field as shown in Fig. 2. The magnified focal 
field and the reference beam are combined by the beam splitter BS2 to interfere. The 
interference pattern is recorded by the CCD camera. As shown in Fig. 5(f), the spiral fringe 
demonstrates that the focal field has a spiral phase with topologic charge l = 2, which 
suggests the existence of OAM. Here, the formation of spiral phase originates from the 
influence of the encoded cosine-azimuthal phase through the abruptly autofocusing process. 

Note that, according to the LSF distribution, for larger even numbers, e.g., n = 6, 8, 10···, 
the total intensity distributions of focal fields also form a complete circle just like that of n = 
4, and the s3 distributions also indicate azimuthal spin splitting. Nevertheless, their focal field 
do not carry spiral phase. Namely, the focal field has a spiral phase only when the phase 
parameter n and polarization order m satisfy the relationship of n = 2m, and then the topologic 
charge of the spiral phase equals to the polarization order m. 

5. Conclusions 

In conclusion, the spin-dependent splitting of vector AAB was realized by encoding cosine-
azimuthal variant phases. Based on the LSF of the two spin components, an approximation 
mapping relationship between the focal field intensity and the phase profile of the input field 
is established. By modulating the cosine-azimuthal variant phase parameter n, the spin-
dependent splitting and OAM in the focal field can be consciously managed. Such optically 
mediated intensity, polarization and OAM distributions could be significant useful in focal 
engineering for special functionality. These results can provide new insights in controlling the 
spin-orbit coupling and optical micro manipulation. 
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