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The angular momentum state of light can be described by positions on a higher-order Poincaré
(HOP) sphere, where superpositions of spin and orbital angular momentum states give rise to laser
beams that have found many applications, including optical communication, quantum information
processing, microscopy, optical trapping and tweezing and materials processing. Many techniques
exist to create such beams but none to date allow their creation at the source. Here we report on a
new class of laser that is able to generate all states on the HOP sphere. We exploit geometric phase
control with a non-homogenous polarization optic and a wave-plate inside a laser cavity to map spin
angular momentum (SAM) to orbital angular momentum (OAM). Rotation of these two elements
provides the necessary degrees of freedom to traverse the entire HOP sphere. As a result, we are
able to demonstrate that the OAM degeneracy of a standard laser cavity may be broken, producing
pure OAM modes as the output, and that generalized vector vortex beams may be created from the
same laser, for example, radially and azimuthally polarized laser beams. It is noteworthy that all
other aspects of the laser cavity follow a standard design, facilitating easy implementation.

INTRODUCTION

Recently the concept of the Higher-Order Poincaré
(HOP) sphere was introduced as a theoretical framework
for describing the total angular momentum of light, both
spin and angular components [1–3]. The HOP sphere de-
scribes higher-order states of polarization of generalized
vector vortex beams, as shown in Fig. 1 (a), in contrast
to the Poincaré sphere (PS) which is a geometric repre-
sentation of all possible states of polarization. While the
Poincaré sphere is a Bloch sphere where the basis states
are two orthogonal states of polarization, the HOP sphere
is a Bloch sphere where the basis states are more general
orthogonal states that incorporate both SAM and OAM.

All the optical modes on the HOP sphere have an
intensity distribution with a central null, as shown in
Fig. 1 (b). These states may be differentiated by the
transmitted intensity through a linear polarizer, e.g., ver-
tically orientated as depicted by the double sided arrows.
Light fields described by points on the HOP sphere are
prevalent in nature and have found applications in high-
speed kinematic sensing [4], OAM fiber mode selection
[5], space division multiplexing [6] and mode division
multiplexing [7]. In particular it is worth calling the
attention of the reader to the poles and the equator of
the sphere. The equator represents the cylindrical vector
(CV) beams [8], with special cases being the azimuthally
and radially polarized light fields as shown in Fig.1 (b).
These fields have found many applications, for example,
in laser material processing [9–11], particle acceleration

[12–15], optical trapping [16–19] and microscopy [20, 21].
The extra-cavity generation of such beams has been
achieved by using an interference approach [12, 22, 23],
liquid crystals [24, 25], sub-wavelength grating [26] and
from a spirally varying retarder [27]. Laser cavities have
been customized to produce particular CV beams by
techniques such as inducing thermal stress to isotropic
gain media [28], by exploiting the thermal birefringence
of laser gain media [29–31], with the use of an intra-
cavity axicon [32–34] and with a conical shaped pump
beam [35–37]. The poles of the HOP sphere represent
scalar vortex beams (having helical wavefronts) with a
uniform circular polarization (right circular at the north
pole and left circular at the south pole). The helicity of
the wavefront arises from the azimuthally varying phase
structure of exp(i`φ) and such beams carry orbital an-
gular momentum (OAM) of `~ per photon where ` is
referred to as the topological charge and can take any
integer value. Henceforth we will refer to the sign of
the helicity (the sign of `) as the “handedness” of the
light. Such beams have found many applications in di-
verse fields such as optical manipulation [38, 39], and
optical free space communication [40]. While many at-
tempts have been made to generate these modes inside a
laser cavity [41–45] the degeneracy in the handedness of
the azimuthal modes means that standard laser cavities
cannot distinguish them: the spatial intensity distribu-
tion of laser modes with opposite azimuthal handedness
(such as +` and −`) are identical, they have identical
radii of curvature on the wavefront and identical Gouy
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FIG. 1. (color online). Higher-order Poincaré sphere representation of vector vortex beams illustrating the (a) local polarization
vectors states at various positions on the sphere. The intensity of the outputs are (b) consistently beams with a central intensity
null. These beams are differentiated by the transmitted intensity from a linear polarizer oriented in the vertical, as depicted
by the double sided arrows. Expressions are provided for the states at the poles and for the special points on the equator with
radial and azimuthal polarization.

phase shifts. Consequently their intra-cavity losses are
identical and thus very often uncontrolled helicities, co-
herent, or incoherent superpositions of modes with op-
posite handedness are produced [45]. Thus while cus-
tomized lasers have demonstrated specific points on the
HOP sphere, each point requiring its own laser design, no
laser to date has been able to create an arbitrary HOP
sphere beam.

Here we show the generation of any HOP sphere beam
directly from a laser. We couple SAM to OAM inside
the laser cavity by means of a wave-plate and a non-
homogeneous polarisation optic (q-plate) so that polar-
ization control maps to OAM mode control. This is the
first time that Pancharatnam-Berry (geometric) phase
control has been applied inside a laser for mode selection.
By control of the relative angles between the wave-plate
and q-plate we can adjust the geometric phase change
of the circulating light, and use this to produce any ar-
bitrary beam on the HOP sphere, including the special
cases of cylidrical vector vortex beams, e.g., azimuthally
and radially polarised light, as well as pure OAM modes.
We outline the theory for the mode control and confirm
it experimentally in a solid state laser for HOP sphere
beams of azimuthal orders |`| = 1 and |`| = 10.

CONCEPT AND THEORY

In contrast to the complexity and challenges of produc-
ing OAM beams and vector vortex beams from lasers,
the control of polarization, or spin angular momentum
(SAM), inside laser cavities is a well established tech-
nique [46]. Our central idea is to exploit the SAM control
as a proxy for OAM control, thereby realising generalized

modes on the HOP sphere.

Consider a standard solid-state laser cavity in a Fabry-
Pérot configuration, as shown in Fig. 2 (a). Inclusion of
a polarising beam splitter (PBS) and quarterwave-plate
(QWP) ensure that the polarisation state in region A is
always linearly polarised, the orientation dependent on
that of the PBS. Traditionally such cavities are used to
output light from the PBS, with the orientation of the
QWP acting as a control on the fraction of light leaked
out. It follows that in region B the circulating light is
circularly polarised. In such a cavity the polarisation
at any position is controlled and repeated after every
round trip. We introduce a non-homogenous polarisa-
tion optic, in the form of a q-plate [5], into the cavity to
act as a SAM to OAM converter. The q-plate ladders
some incoming OAM state following the selection rules:
|`, L〉 → |`+ 2q,R〉 and |`, R〉 → |`− 2q, L〉, where L and
R refer to left and right circularly polarised light, ` is the
incoming OAM state and q is the charge of the q-plate
(see Supplementary Material). This concept is illustrated
graphically in Fig. 2 (b). By modifying the standard cav-
ity to that shown in Fig. 2 (c), OAM-carrying beams are
created within the cavity. The doubling of the elements
ensures that the spatial mode and polarisation states are
repeated after each complete round trip. The QWP and
q-plate angles provides two degrees of freedom necessary
to traverse the entire HOP sphere. It can be shown (see
Supplementary Material) that our repeating mode in the
cavity can be described by

vout =

[
cos

(
Θ

2

)
exp

(
−iΦ

2

)]
|L¯̀〉+

[
sin

(
Θ

2

)
exp

(
i
Φ

2

)]
|R`〉 ,

(1)
where |L¯̀〉 = exp(−i|`|φ) |L〉, |R`〉 = exp(i|`|φ) |R〉, with
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FIG. 2. (color online). (a) The selection of linearly polarized
light in a standard solid-state laser cavity in a Fabry-Pérot
configuration is performed with a polarizing beam splitter
(PBS) and the use of a quarterwave-plate (QWP) controls
the fraction of light leaked out. (b) The q-plate is used to
transform some single mode light beam into a helically-phased
beam depending on the incident state of circular polarization
and the handedness of the output beam is achieved through
the following selection rules. (c) Experimental concept of the
active selection pure OAM LG0` modes of opposite handed-
ness by the intra-cavity coupling of SAM to OAM. The cou-
pling is achieved by selecting a pure SAM state by transmit-
ting light that is linearly polarized in the horizontal through
a quarterwave-plate (QWP) rotated at some angle β. This
LG00 shaped field is directed to a q-plate (QP) rotated at
some angle γ and consequently out coupled through the fold-
ing mirror (FM). The two rotation angles may be varied ac-
cordingly to map out the higher-order Poincaré sphere. The
inset illustrates the various polarization states operating in
the cavity with their associated vectors described in the cir-
cular polarization basis.

|L〉 and |R〉 representing uniform left circular and right
circular polarization states, respectively, Θ = π/2 + 2β
and Φ = 2γ − 2β where β and γ are the rotation angles
of the QWP and q-plate, respectively. This is precisely
the description of a point on the HOP sphere with coor-
dinates Θ and Φ, where the poles on the sphere represent
the basis states |R`〉 and |L¯̀〉. In other words, any HOP
sphere beam can be realised from the laser. Examples of

special cases are given in Table I.

TABLE I. Specialised output states are realised by rotating
the QWP and q-plate through angles β and γ, respectively.
These include a pure OAM state of −` (−π/4, γ), pure OAM
state of +` (π/4, γ), radial polarization (0, 0) and azimuthal
polarization (0, π/2)

β γ = 0 γ = π/2

−π/4 e−iπ
4 |L¯̀〉+ |R`〉 e−i 3π

4 |L¯̀〉+ 0 |R`〉

0 1√
2

(|L¯̀〉+ |R`〉) i√
2

(− |L¯̀〉+ |R`〉)

π/4 0 |L¯̀〉+ e−iπ
4 |R`〉 0 |L¯̀〉+ ei

π
4 |R`〉

Heuristically the cavity can be understood by following
the evolution of a Gaussian mode of linear polarisation
propagating in region A away from mirror R1. The hori-
zontally polarised Gaussian beam is converted into a left
circularly polarised Gaussian beam after the wave-plate
if the wave-plate axis is at 45o. The q-plate converts
this left circularly polarised beam into an OAM beam of
charge ` = 1 with right circular polarization. Reflection
off the mirror inverts the entire state in both SAM and
OAM, while the two remaining elements, orientated at
opposite angles to the first two, reverse the process to
create a vertically polarised Gaussian beam incident on
mirror R2. When this beam is propagated backwards
through the cavity the modes invert again and return to
mirror R1 to the starting mode. The consequence is that
the handedness of the light, as well as its vector nature, is
completely defined by the angles of the QWP (β) and q-
plate (γ). For example, if the QWP is rotated to produce
linearly polarized light prior to the q-plate, then superpo-
sitions of left and right handed light with opposite OAM
charges is produced - our general vector beams.

EXPERIMENT

The resonator concept as illustrated in Fig. 2 (c) ne-
cessitates the use of a pair of q-plates and a pair of
QWPs with a polarization insensitive 45◦ mirror (FM)
positioned between the q-plates. This cavity may be
equivalently constructed by resorting to a V-shaped cav-
ity where the two arms are separated within a few degrees
with a planar mirror positioned at the apex of the V al-
lowing for an off-axis design where only a single q-plate
and QWP are required. The V-shaped cavity was ex-
perimentally realised in a diode-pumped solid-state laser
where a 0.5 at.-% Nd-doped YAG rod (4 × 50 mm rod)
was side pumped with a total input average pump power
of ∼ 600 W operating at 805 nm. The end mirrors were
both concave high reflectors with curvatures R1 = 400
mm and R2 = 500 mm, respectively, with a planar mir-
ror of 90% reflectivity positioned at the apex of the V.
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The separation distance between the two concave mir-
rors was 900 mm and the angle at which the two arms
were separated by the plane mirror was in the order of
5◦. The q-plate (q = 1/2) was designed to operate most
efficiently when positioned on-axis and it was thus po-
sitioned sufficiently adjacent to the plane mirror. The
QWP (Multi-order operating at 1064 nm) was required
to transmit both arms and was thus positioned to incor-
porate its clear aperture of ∼ 12 mm. A lens of focal
length f = 400 mm was inserted in the cavity to aid
stability and to facilitate the clear aperture restriction
imposed by the QWP. Finally a polarizing beam split-
ter (PBS) was preferred for the selection of linear po-
larization in the horizontal. A further practical consid-
eration was required to be met in that with the pump
arrangement, multimode operation was favoured which
allows the existence of higher-order azimuthal and radial
modes, we thus inserted a circular aperture with variable
diameter such that the field incident on the q-plate was
LG00 in shape, i.e., only radial indices of p = 0 were al-
lowed. The forward propagating wave with this arrange-
ment was considered as the propagation from R1 to R2

with the back propagating wave acting in reverse. These
two waves impinged on the planar mirror thus presenting
two outputs; however, our interest lies in the output of
the forward wave, as described by Eq. 1.

RESULTS

We initially set γ = 0 and varied the angle of rota-
tion, β, of the QWP. The output beam was an annu-
lar shaped beam (see Fig. 3) independent of β, as ex-
pected from theory. The state of the output is given by
vout = α1 |L¯̀〉+α2 |R`〉 where α1 and α2 are the relative
weightings of the states on the poles. A measurement of
the polarisation state (evident from the inserts in Fig. 3)
confirms that the mode evolves from a left-circularly po-
larized beam (β = −45◦) to a right-circularly polarized
beam (β = +45◦).

To determine the accuracy in the variation of the po-
larization as shown in Fig. 3, we measured the intensity
of the relative weightings of the left and right components
of the transmitted light. These components describe the
states on the poles of the HOP sphere and thus α1 =
cos (Θ/2) exp (−iΦ/2) and α2 = sin (Θ/2) exp (iΦ/2).
The measured intensities of the respective components
compare well with the numerical determination for β var-
ied from −45◦ to +45◦ as illustrated in Fig. 4. Next we
measured the OAM state by an azimuthal inner product
[48, 49] with a phase-only spatial light modulator (see
Supplementary Material). We find that at β = −45◦ the
mode is a pure ` = −1 helicity, while a pure ` = +1
for β = +45◦. This is illustrated graphically in Fig. 5,
together with the raw data for three of the modal de-
composition channels, where a central peak indicates the

FIG. 3. (color online). Annular shaped profiles are recorded
at the output of the laser for the forward propagating wave for
a variety of rotation angles of the QWP. The insets, showing
filtered left- and right-circularly polarized components of the
field, illustrate the state of polarization at the output where
we evolve from a pure SAM state of left handedness (β =
−45◦) to a pure SAM state of right handedness (β = +45◦)
with an equivalent superposition of SAM states in between
(β = 0◦).

present mode, and a central null indicates the absence
of that mode. The intra-cavity aperture ensures that
the radial index of the mode is p = 0, and this too is
confirmed by modal decomposition (see Supplementary
Material). This approach presents a means to actively
select the handedness of pure LG0±` modes depending
only on the rotation angle of the QWP β and the charge
q of the q-plate. Modes represented on the equator of
a HOP sphere consist of a mixture of SAM and OAM
states as determined by Eq. (1). The combination of
SAM states is achieved by setting β to zero such that
a pure linear state is incident on the q-plate resulting
in a superposition output (as in the insert of Fig. 3 for
β = 0◦). Consequently this also leads to a superposition
of OAM and SAM states at the output, as given in Table
I. The non-separability of the polarization and spatial
content of the mode means that upon passing through
a linear polarizer, the annular shaped output splits into
two lobes that rotate with a rotation in the polarizer.

With the laser operating under the conditions of β = 0
and γ = 0, we obtain an annular shaped (Fig. 6 (a))
beam that leads to a rotatable lobed beam (Fig. 6 (b))
succeeding a linear polarizer. The two lobed structure
is oriented parallel to the orientation of the linear polar-
izer (illustrated as double sided arrows) thus presenting
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FIG. 4. (color online). The variation in the polarization at
the output is measured by determining the intensity of the
relative weightings, α2

1 and α2
2, of the states on the poles, |L¯̀〉

and |R`〉, respectively. This compares well with the numerical
determination for β varied from −45◦ to +45◦.

FIG. 5. (color online). An azimuthal inner product is exe-
cuted on the output of the laser operating under β = −45◦

and +45◦ illustrating a pure LG0−1 and LG0+1 mode, respec-
tively, with their corresponding measurement channels.

a pure radially polarized vectorial vortex beam. With
γ rotated by 90◦ we select an annular shaped beam
(Fig. 6 (c)) that is of pure azimuthal polarization which is
hallmarked by the two lobed structure being perpendic-
ular to the orientation of the linear polarizer (Fig. 6 (d)).
The remarkable nature of selectively exciting these vecto-
rial vortex beams is that not only are cylindrical vector-
vortex beams achievable but so too are arbitrary vector
states by controlling the input polarization state on the
q-plate by adequately selecting the rotation angle β. An
astute control of β and γ allows for the entire HOP sphere
to be mapped and to aid consistency in comparison to
Fig. 1 (b), the states between the radial and azimuthal
polarizations are accordingly determined as illustrated in
Fig. 7. The annular outputs are transmitted through a
linear polarizer oriented in the vertical (depicted by the
double sided arrows) and are in excellent agreement with
the anticipated intensities.

FIG. 6. (color online). Pure vectorial vortex beams are ac-
tively selected by propagating linearly polarized light onto the
q-plate by setting β to zero. The (a) output of the laser at γ
set to zero is an annular shaped beam which is subsequently
transmitted through a linear polarizer resulting in a lobed
beam that angularly rotates with a rotation of the polarizer
presenting a purely radially polarized beam. (b) The lobed
structure is parallel to the orientation of the polarizer (indi-
cated as double sided arrows) upon rotation. With γ rotated
by 90◦ we select (c) an annular shaped profile that again deliv-
ers a lobed structure that rotates with a rotation in the linear
polarizer, however, (d) perpendicularly to the orientation of
the polarizer indicating pure azimuthal polarization.

This technique is not limited to LG0,±1 modes, in fact
a q-plate with a higher q value may be equivalently re-
alised. We demonstrate this by replacing the q-plate of
q = 1/2 with q = 5 thus allowing for the selection of
LG0,±10 modes without changing the physical properties
of the cavity. The outputs for the cavity operating under
β = −45◦, +45◦ and 0◦ with γ = 0 are illustrated in
Fig. 8 (a) and show well defined annular beams. With
the cavity operated at β = 0◦, the annular output leads
to a rotatable lobed beam succeeding a linear polarizer as
shown in Fig. 8 (b) resulting in a radially polarized out-
put. Again, to infer the OAM of the mode, we execute
an azimuthal inner product with the digitally encoded
transmission function exp(imφ) for m varying from -12
to +12 in unit steps and we identify an on-axis signal for
m = +10 and m = −10 with zero elsewhere correspond-
ing to operation for β = +45◦ and −45◦, respectively
as presented in Fig. 9 with some example measurement
channels.

CONCLUSION

We have outlined the concept for a new class of laser
that utilised geometric phase control to realise arbitrary
HOP sphere beams. We have demonstrated the concept
in an otherwise conventional solid state laser cavity and
shown the controlled generation of such beams, includ-
ing the special cases of pure OAM modes as well as az-
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FIG. 7. (color online). The experimental selection of beams
as represented on a higher-order Poincaré sphere illustrating
output beams that have an annular shaped intensity profile
and are differentiated by the transmitted intensity from a lin-
ear polarizer oriented in the vertical as depicted by the dou-
ble sided arrows. The states on the poles with the special
cases of radial and azimuthal polarization are represented by
the corresponding expressions where the values in parenthesis
represent the rotation angles of β and γ, respectively.

FIG. 8. (color online). The technique in the selection of pure
LG0±` modes is not limited to ` = ±1 and for a q-plate with
q = 5 we obtain (a) annular outputs for the cavity operating
under β = +45◦, −45◦ and 0◦ with γ = 0. (b) At β = 0◦, the
output leads to a rotatable lobed beam succeeding a linear
polarizer inferring radial polarization.

imuthally and radially polarised light. As these fields
have found many applications to date, we envisage that
the versatility of creating HOP sphere beams directly
from the source will find much interest. In particular,
as the first example of intra-cavity mode selection by
the Pancharatnam-Berry phase, we believe this report
will spurn interest in this approach to designing custom
lasers.

FIG. 9. (color online). An azimuthal inner product is exe-
cuted on the output of the laser operating under β = −45◦

and +45◦ illustrating a pure LG0−10 and LG0+10 mode, re-
spectively, with their corresponding measurement channels.
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SUPPLEMENTARY MATERIAL

Quarterwave-plates and q-plates

The mechanism of operation of the laser is to a large
extent determined by the operation of the quarterwave-
plate and the q-plate, both of which are wave-plates.
Here we provide a detailed discussion of the operation
of these optical components, in terms of Jones matrices.
For this purpose we’ll use the circular polarization basis.

The Jones matrix for a general wave-plate (with either
horizontal or vertical optic axis) is given by

UWP =

[
cos
(
µ
2

)
i sin

(
µ
2

)
i sin

(
µ
2

)
cos
(
µ
2

) ] . (1)

The Jones matrix for a rotated version of the general
wave-plate is

UWP(β) = R(β)UWPR(−β)

=

[
cos
(
µ
2

)
ie−i2β sin

(
µ
2

)
iei2β sin

(
µ
2

)
cos
(
µ
2

) ]
, (2)

where the rotation matrix in the circular polarization ba-
sis is

R(β) =

[
exp(−iβ) 0

0 exp(iβ)

]
. (3)

For a quarterwave-plate µ = π/2, which gives

UQWP(β) =
1√
2

[
1 ie−i2β

iei2β 1

]
, (4)

and for a halfwave-plate µ = π, giving

UHWP(β) =

[
0 ie−i2β

iei2β 0

]
. (5)

In the last five years, the use of q-plates in the gen-
eration of helicoidal beams has increased considerably
[1]. These compact devices may ideally achieve conver-
sion efficiencies (from a Gaussian to a helically phased
mode) approaching 100% and do not deflect the beam.
By modulating the input polarization, they allow the se-
lection of arbitrary states on the OAM Poincaré sphere
with switching times in the order of a few nanoseconds.
In addition, q-plates can be tuned for partial conversion
or for the selection of the wavelength of the input beam
and may be switched on and off by some external elec-
trical control.

A q-plate is realized as a slab of a birefringent material,
such as a liquid crystal, having a uniform birefringent
phase retardation δ across the slab thickness (which can
be electrically controlled) and a space-variant transverse

optical axis distribution exhibiting a topological charge
q [2, 3]. The charge q represents the number of rotations
of the local optical axis in a path circling once around
the center of the plate, where a topological defect must
be present. The sign of q may be positive or negative
depending on whether the rotation of the axis has the
same or opposite direction as the path.

In the simplified limit in which the q-plate is ideally
thin, transverse diffraction effects arising from propaga-
tion inside the device can be neglected (such propaga-
tion effects have been discussed in Ref. [4], although only
within an approximate treatment), so that the q-plate
acts as an ideal phase optical element. In this approx-
imation, the birefringence-induced Pancharatnam-Berry
phase can be derived by using a simple Jones matrix ap-
proach [5–7]. A q-plate is a halfwave-plate with an optic
axis that varies as a function of the azimuthal angle. In
other words, one needs to replace β → qφ in Eq. (5) [8],
where φ is the azimuthal angle and q is a half-integer (for
continuity across the optical element). The Jones matrix
for a general q-plate is therefore given by

UQP(q) =

[
0 ie−i2qφ

iei2qφ 0

]
. (6)

We illustrate here the example for q = 1/2 noting that
other cases can simillarly be derived. Hence, discarding
an overall factor of i, we obtain

UQP =

[
0 e−iφ

eiφ 0

]
. (7)

When operating on the circular polarization states, the
q-plate in Eq. (7) produces

UQP |L〉 = |R〉 eiφ ≡ |R`〉 (8)

UQP |R〉 = |L〉 e−iφ ≡ |L¯̀〉 . (9)

The Jones matrix for the rotated version of the q-plate
in Eq. (7) is

UQP(γ) = R(γ)UQPR(−γ)|φ→φ−γ

=

[
0 e−i(φ+γ)

ei(φ+γ) 0

]
, (10)

where γ is the q-plate rotation angle and, in deriving
Eq. (10), in addition to the operation of the rotation
matrices, which transform the polarization basis, one also
needs to transform the coordinates, which leads to a shift
in the azimuthal angle.

The combined operation of the quarterwave-plate and
the q-plate, with rotation angles β and γ, respectively,
on a horizontally polarized input state, produces

|ψ〉out = UQP(γ)UQWP(β) |H〉in

=

[
cos
(
π
4 + β

)
e−i(φ+γ−β)

sin
(
π
4 + β

)
ei(φ+γ−β)

]
, (11)
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where we discarded a global phase factor. The resulting
output state can be expressed as

|ψ〉out = cos

(
Θ

2

)
exp

(
−iΦ

2

)
|L¯̀〉

+ sin

(
Θ

2

)
exp

(
i
Φ

2

)
|R`〉 , (12)

in terms of the basis states defined in Eqs. (8) and (9),
where Θ = 2β + π/2 and Φ = 2γ − 2β.

Note that Eq. (12) represents an arbitrary position on
the higher-order Poincaré sphere, denoted by coordinates
Θ and Φ, which are given in terms of the two physical
rotation angles β and γ.

Mode measurement

An arbitrary function within a vector space may be
represented as a linear combination of certain basis ele-
ments as there exists at least one basis set within the vec-
tor space. Similarly, an arbitrary paraxial optical beam
may be expanded and represented by basis sets corre-
sponding to orthogonal solutions to the paraxial wave
equation. These solutions include Hermite-Gaussian,
Ince-Gaussian and Laguerre-Gaussian functions and the
linear combination based on these orthogonal sets may
be expressed as:

U(r) =

N∑
n=1

anΨn(r), (13)

where an = ρne
i∆θn is the complex correlation coefficient

corresponding to a specific basis element Ψn(r) where
Ψn(r) = ψn(r)en is the nth mode having an amplitude,
ρn, of a specific polarisation, en. The phase difference be-
tween two modes ∆θn, is known as the intermodal phase
difference where a mode with a planar phase is selected as
one of the modes. The determination of the coefficients
an which are normalised according to:

N∑
n=1

|an|2 =

N∑
n=1

ρ2
n = 1, (14)

may be determined by executing an inner product given
as:

an = 〈U,Ψ〉 =

∫∫
<
U(r)Ψ∗n(r)d2r, (15)

where the asterisk represents the complex conjugate. The
determination of the respective correlation coefficients al-
lows for an arbitrary paraxial optical beam to be com-
pletely decomposed into the subsequent basis elements.
The weightings are optically determined by sampling the
resultant field (u(x, y) = U(x, y)Ψ∗n(x, y)) in the Fourier

plane where the corresponding Fourier transformation is
expressed as:

U1(kx, ky) = F {u(x, y)} =

∫∫
U(x, y)Ψ∗n(x, y)

× exp (−i (kxx+ kyy)) dxdy. (16)

The weightings as expressed in Eq. (15) are mathemati-
cally determined through an inner product and we obtain
this formalism optically by measurement of the on-axis
intensity of the field in the Fourier plane by setting the
propagation vectors to zero (kx = ky = 0) in Eq. (16)
and is expressed as:

Iρn(0, 0) = |U1(0, 0)|2

=

∣∣∣∣∫∫ U(x, y)Ψ∗n(x, y)dxdy

∣∣∣∣2
= ρ2

n. (17)

In the decomposition of a field in both amplitude and
phase, the type of transmission functions depends on the
full field information of modes from an orthogonal set.
For the extraction of an amplitude of a single mode from
the orthogonal set, the transmission function may be cho-
sen as the complex conjugate of the corresponding field:

Tn(r) = ψ∗n(r). (18)

With this transmission function the on-axis optical in-
tensity in the Fourier plane (far-field) is Iρn ∝ ρ2

n which is
in fact the power of mode ψn. The measurement of the
intermodal phase difference of some mode ψn to some
reference mode ψ0, however, requires two transmission
functions where each represent an interferometric super-
position of the two mode fields:

T cos
n (r) = [ψ∗0(r) + ψ∗l (r)]/

√
2,

T sin
n (r) = [ψ∗0(r) + iψ∗l (r)]/

√
2. (19)

The correlation of the incident field with these trans-
mission functions results in intensities Icos

n ∝ ρ2
0 + ρ2

n +
2ρ0ρnsin∆θn and Isin

n ∝ ρ2
0 + ρ2

n + 2ρ0ρncos∆θn corre-
sponding to T cos

n and T sin
n , respectively. Again, this is

measured at the Fourier plane and the intermodal phase
difference is calculated according to:

∆θn = −arctan

[
2Isin
n − ρ2

n − ρ2
0

2Icos
n − ρ2

n − ρ2
0

]
. (20)

Experimentally the unknown field U(x, y) is directed
onto a spatial light modulator (SLM) that is electroni-
cally addressed with an appropriate transmission func-
tion Tn(r). The resultant field is Fourier transformed
with a thin optical lens by positioning the lens a focal
length from the plane of the SLM and the intensity mea-
surement to determine the relative weightings (Eq. (17))
is performed at a focal length beyond the lens. The



10

FIG. 10. (color online). A modal decomposition in amplitude
and phase was executed on the output of the cavity operated
at q = 1/2, β = −45◦ and γ = 0◦. An intensity signal
was obtained for a transmission function of LG0−1 with zero
elsewhere which is further demonstrated in the measurement
channels.

transmission function as addressed to the SLM is cou-
pled with a linear grating employed as a phase carrier to
separate the first order of diffraction from the zeroth and
unwanted diffraction orders and the intensity at the cen-
tre of the first diffraction order is sampled to determine
the relative weightings. This experimental procedure was

executed on the output of the optical cavity operated at
q = 1/2, β = −45◦ and γ = 0◦. The basis set for the de-
composition was chosen to be the Laguerre-Gaussian set
and the transmission functions were varied from p = 0
through 2 with ` = −3 through to +3 and as illustrated
in Fig. 10, we obtain an on-axis intensity signal for a
Laguerre-Gaussian mode of radial order, p = 0 and az-
imuthal order ` = −1 with zero for all other modes which
affirms a pure LG0−1 mode at the output. The Gaussian
width in the Laguerre-Gaussian function was chosen from
the cavity design parameters.
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