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Abstract of the Dissertation

Interaction of the Quantum Vacuum with an
Accelerated Object and its Contribution to

Inertial Reaction Force

by

Hiroki Sunahata

Claremont Graduate University: 2006

A possible relationship between the zero-point field of the quantum vacuum
and the origin of inertia is investigated. The zero-point field (ZPF) is a random, ho-
mogeneous, and isotropic electromagnetic field that exists even at the temperature
of absolute zero, and its energy density spectrum is Lorentz invariant. Following
the approach by Rueda and Hais€oynd. of Phys. Vol28, 1057, (1998)), the
vacuum expectation value of the ZPF Poynting vector corresponding to the field
energy being swept through by the accelerated object per unit time per unit area
is evaluated. Here the object is under uniform acceleration, or constant proper ac-
celeration which is known as hyperbolic motion. From this Poynting vector, we
can further evaluate the momentum of the background fields the object has swept
through as seen from the laboratory frame, and this momentum can then be used to
find the force exerted on an accelerated object by the ZPF. This approach had the
advantage of avoiding the model dependence used previously by Haisch, Rueda,
and Puth€ (Phys. Rev. A9, 678, (1994)).

Although, in their analysis, Rueda and Haisch useddlassical stochastic
electromagnetic zero-point field, in the present researchgtaamtumformula-
tion for the ZPF is employed using the creation and annihilation operators in the
Hilbert space. A relativistic result is reproduced as well by use of the electromag-
netic energy-momentum stress tensor which has the Poynting vector components

as some of its elements. Similar results are obtained in either approach, and the



force on the accelerating object by the ZPF is found to be proportional and in the
opposite direction to the acceleration. Furthermore the proportionality constant
turns out to be a scalar quantity with the dimension of mass. Thus the interac-
tion between the accelerated object and the quantum vacuum appears to generate a
physical resistance against acceleration, which manifests itself in the form of iner-
tial massm. It has been conjectured by Rueda and collaborators that not only the
electromagnetic but other ZPFs such as those of the strong and weak interactions

may contribute to the inertial mass.
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1 Introduction

1.1 Overview

The zero-point field (ZPF) is a random electromagnetic field that exists even at the tem-
perature of absolute zero. The existence of this field first came to be known through the
study of the blackbody radiation spectrum early in the twentieth century, and was made
more popular with the advance of the quantum theory. Also along with the concept of
the zero-point-field, a new classical electromagnetic theory has been proposed [1][2]
which includes the zero-point-field as the boundary condition for the Maxwell equa-
tions. This new theory has been termed random electrodynamics or stochastic electro-
dynamics, and it has successfully explained several phenomena which were considered
as purely quantum in nature, such as Casimir forces [3] and van der Waals forces [4][5],
to name a few.

Moreover, the developments of Stochastic Electrodynamics (SED) in the last decade
has expanded its boundary and found new applications. Rueda, Haisch anff Putho
claim that the origin of inertia could be explained, at least in part, as due to the interac-
tion between an accelerated object and the zero-point-field. In their first approach [6],
the Lorentz force the ZPF exerts upon the accelerating harmonic oscillator was calcu-
lated, and in the second by Rueda and Haisch [7], a more general method was taken by
finding out the zero-point-field Poynting vector that an accelerating object of a certain
volume Vy sweeps through. In this theory, this second method will be repeated not
in a Stochastic but in ®@uantum Electrodynamid€ED) approach. It will be shown
that the same results follow in QED as well, and that inertia could originate out of the
interaction between the accelerated object and the fluctuating quantum vacuum.

We will first review, before we go into the detailed analysis of this thesis, the zero-

point-field (ZPF) by itself as well as the theory of Stochastic Electrodynamics.



1.2 Zero-Point-Field

The concept of the zero-point energy first arose in 1911 in Planck’s so-called second
theory [8] for the blackbody radiation spectrum. He obtained, for the average energy

of an oscillator in equilibrium with the radiation field at temperattire

U) = %hv% _ %hvcothz%_
= % quh:it: J_ri = ehv/lt]TV_ 1" %hy’ 1.1)
and for the spectral energy density
8mv? hy
p(v, T)dv = = (m) dv. (1.2)

It is interesting to note that Planck obtained, in Eq.(1.1), a temperature-independent
term (1/2)hv, suggestive of some residual energy at the temperature of absolute zero for
the oscillator energy but failed to obtain in Eq.(1.2) this temperature-independent term
for the field, which we now identify as the Zero-Point-Field (ZPF) of the fluctuating
vacuum field. In 1913, two years after Planck’s "second theory”, Einstein and Stern [9]
published a paper about the interaction of matter with radiation using a simple dipole
oscillator model. In this paper, they remarked that if such an oscillator has a zero-point-
energy ofiw per normal mode, then the equilibrium spectrum of radiation is found to

be the Planck spectrum
hwd/m2cd

p(a), T)dw = m

dw. (1.3)

It is clear that Einstein and Stern had attributed the sum of the oscillator ZPF and the
field ZPF solely to that of the oscillator. Had they postulated the correct zero-point

energy of (¥2)hw to both the oscillator and the field, they would have arrived at the



correct Planck spectrum with the temperature-independent term,

8mv? hy hy
p(V, T)dV = ? (m + E) dv. (14)

As this result of Einstein and Stern indicates, there was no concept, at this point, of the
zero-point-field. In 1916, Nernst [10] stated that it is impossible to tell tiferdince
between matter and field oscillators if they are in thermal contact to attain statistical
equilibrium, and that Planck’s equation (1.1) should therefore hold for both matter and
field oscillators. This statement of Nernst is generally considered as the birth of the
concept of theeero-point-field

In 1924, Mulliken [11] provides us with a direct evidence of the teri2jiw in the
energy levels of the molecular vibrational spectra of boron monoxide. This is regarded
as the first evidence of the reality of the zero-point energy, and several months after this
Mulliken’s discovery, the quantum formalism had begun to be established, in which the

concept of the zero-point energy appears so naturally.

1.3 Stochastic Electrodynamics

As a result of the pioneering works in the first half of the twentieth century, mentioned
in the previous section, the reality of the zero-point energy and zero-point field had
slowly begun to be realized. This opened up in 1960s a new field of physics called

Stochastic Electrodynamics (SED). SED is, in Boyer's words [12],

Lorentz’s classical electron theory [13] into which one introduces ran-
dom electromagnetic radiation (classical zero-point radiation) as the bound-

ary condition giving the homogeneous solution of Maxwell’s equations.

The scale of the random radiation is determined with the use of one adjustable param-
eter, which is chosen in terms of Planck’s constarithis exact form of SED was first

proposed by Marshall [1][2], and further developed by Boyer [14], and it has been suc-



cessful in explaining various quantum phenomena within the framework of traditional
classical physics complemented with a classical version of the electromagnetic fluc-
tuations of the vacuum. Some of these successful achievements include: the Casimir
effect [3], the Lamb shift [15], the van der Waals forces [16], atomic stability [17],
Davies-Unruh &ect [18], among many othets.

Of particular interest to us in the above is the Davies-Unlffiicg which was dis-
covered in 1975 independently by Davies [20] and Unruh [21] through the study of
Hawking radiation of black holes. This Davies-Unrufieet states that, if accelerated
through vacuum, an observer finds the surrounding vacuum filled with a heat radiation
of temperaturdl = hia/2rxck. 2 The meaning of thisféect is that an observer under
constant acceleratioa finds himselfherself as if hgsshe were immersedt restin a
thermal bath of temperatufie = 7ia/2rck This acceleration-dependent Davies-Unruh
effect suggests that there exists some unknown structure of the vacuum which reacts
only against acceleration. If this hidden structure of the vacuum is activated only if
an object is accelerated, then this vacuum might exert a kind of ZPF resistance against
accelerated objects, and this could explain the heretofore unexplored origin of inertia.
Along this line of thoughts, a series of papers was published by Rueda, Haisch, and
Puthdt, and by Rueda and Haisch, in which this ZPF resistive force against acceler-
ation was evaluated using a Planck oscillator model [6], and for a model-independent
case [7]. In both cases, they found that the resistive force is proportional in magnitude
and in the opposite direction to acceleration. In this thesis, the model-independent case
will be studied following Rueda and Haisch’s approach, usirguantum electrody-
namicalformulation.

In the next chapter, a mathematical representation of the zero-point field is intro-
duced, along with the coordinate systems we employ. In Chapter 4, detailed calcula-

tions of the ZPF Poynting vector (momentum density) that an object sweeps through

1For a more detailed history of the developments of SED, refer to de la Pena and Cetto [19], Ch. 4.
2Derivation of this Davies-Unruhfiect in quantum formulation is given in Appendix F.



under its accelerated motion will be shown and the mathematical form of the electro-
magnetic vacuum inertial mass componentwill be determined. A fully covariant
approach will be taken in Chapter 5 to obtain the same fornmfas that obtained in

Chapter 4.



2 Zero-Point Radiation

2.1 Zero-Point Field in Classical Random Electrodynamics

The zero-point radiation spectrum has several interesting properties [12]. It is homo-
geneous and isotropic in every inertial frame [17], Lorentz invariant [2, 22], invariant
under an adiabatic compression [10, 23], and invariant under scattering by a dipole
oscillator [17] moving with arbitrary constant velocity.

The classicalelectromagnetic zero-point radiation can be written, as a superposi-

tion of plane waves [22],

2
E(R.t) = Z f d®ke(k, h,p(w) cos k - R — wt — 6(k, )] , (2.1)
A=1
2
B(R,t) = Z f d*k (k x &) h;p(w) cos k - R - wt — 6(K, )] . (2.2)
A=1

Here, the zero-point radiation is expressed in expansion of plane waves and as a sum
over two polarization stategk, 1), which is a function of the propagation vectoand

the polarization indext = 1,2. For each direction of propagation given bythere

exist two mutually orthogonal polarization statésahd €2, where the superscripts 1

and 2 correspond to the polarization indexHence we have

& e =6im I,m=12, (2.3)

k=0 m=12 (2.4)

If we consider the third unit vectar® = k = k/k, wherek is the propagation vector,

then these three vectors form an orthonormal triad,

3 3
Z (gd)i (gA),- = Z Aiﬂgjﬂ = Ail':‘jl + Aizgjz + @iséjs = bij, (2.5)



and also

S=k=exe (2.6)

and two other relationships of the orthonormal triad can be generated by symmetry:
1-2-3-1.
Note that, in the above, the polarization componegitare to be understood as

scalars. They are the projections of the polarization unit vectors onieetkie:

d=2' %, K=%9.2 @2.7)

We also use the same convention with khenit vector, i.e.k, = k- &.

The polarization vectors also satisfy the following relationships:
2 ~A A
Z'}@j = Gij — kikj (2.8)
A=1
Ai (R X g)j = 8iijk (2-9)
Z
(kxe) (Rxe)j = 6ij — kik; (2.10)

whereg;j is a Levi-Civita symbol, and the polarization superscriptsn thee’s are
omitted for simplicity. Refer to Appendix A for derivations of the relationships above.
In the expressions (2.1) and (2.2), the random pl@sel) is introduced, following
Planck [24] and Einstein and Hopf [25], to generate the random, fluctuating nature of
the radiation. Thig(k, 1) is a random variable distributed uniformly in the interval
(0, 2) and independently for each wave vedtand the polarization index Also the
spectral functiorh,p(w) is introduced to set the magnitude of the zero-point radiation,

which is found in terms of the Planck’s constéwds [22]

hiw

hZ(w) = 57

(2.11)



Plack’s constant enters the theory at this point only as a scale factor to attain correspon-
dence between zero temperature random radiation of (classical) stochastic electrody-
namics and the vacuum zero point field of quantum electrodynamics. A derivation of
this spectral function is also given in Appendix B and it is found that this value for the

spectral function is slightly dierent in the quantum electrodynamical case.

2.2 Zero-Point-Field in Quantum Electrodynamics

In this thesis, a quantum approach is used instead of the classical stochastic approach,
to evaluate the vacuum expectation values of the zero-point field. The QED formulation
of the zero point electric and magnetic fields are also expressed by the expansion in

plane waves as [26, 27]

2
E(r,t):Zfd?’ké(k,/l)Hzp(w) | (k, 2) expiot + ik - 1) + o (k, 2) explot — ik -1)],
A=1

(2.12)

2
B(r.t) = Z fd3k(R X &)Hzp(w) [@ (K, 1) expiot + ik - 1) + &' (k, 1) expfot - ik - )]
=1

(2.13)

Here the polarization unit vectoegK, 1) (1 = 1, 2) and the wave vectde are the
same as those in the random fields (2.1) and (2.2). The cosine functions in the random
electrodynamics formulation are now replaced with the exponential functions and the
guantum operators(k, 2) anda’(k, 2). These quantum operators are annihilation and

creation operators on the Hilbert space and satisfy the commutation rules

(k. ). (K. 2)] =o' (k.2).a" (K,2)]=0 (2.14)

[ (k. 2).a" (K, 2)] = 6,08%Kk - K) (2.15)



and have the expectation values,

(0 (k, ) e (k, )| 0) = (0l (k, ) @' (K', 1)| 0) = O (2.16)
(Ol (k, M)’ (K, 2)]0) = 6,.06%(k - K) (2.17)
(Ola" (K, D (k’, 1)|0) =0 (2.18)

The overline onE and B in Eq.(2.12) and (2.13) indicates that these fields are now
given as operators.

Also the spectral function, introduced to set the scale of the radiations, is expessed
asH;p(w) using an uppercase H to distinguish this from the classigfb). Itis found

in Appendix B that the value of thid,p(w) is

hiw

szp(w) = ey

(2.19)

which is not the same as the classical dagfw) = w/2r.



3 Correspondence between Random and Quantum Zero-

Point Field

In Rueda and Haisch’s classical approach, averaged field fluctuations were evaluated
using the two-point correlation functions. In the quantum approach used in the present
research, however, the expectation values of the vacuum field will be evaluated using
the creation and annihilation operators. Although these two approaches are similar in
some respects, there also exist several majberdinces, which was first pointed out

by Boyer [26].

In this chapter, following Boyer’s analysis, a brief comparison is presented between
random electrodynamics and quantum electrodynamics. The connection between the
two-point correlation functions in free-field quantum electrodynamics and in random
electrodynamics is examined, and it is found that they are in general not equal to each
other because of the dependence on the order of the quantum operators. However, if
all the products of quantum operators are symmetrized by taking all the permutations
of the operator order, then the two theories yield identical results for the correlation

functions.

3.1 Two-Point Correlation Function

The electromagnetic field fluctuations may be characterized by the field correlation
functions at two dferent points in space and in time. Therefore, in order to evaluate

the correlation in random electrodynamics, averaging over the random phases is taken,

10



and we obtain

2 2
(Eiru, WE(r2 ) = > > f %k f o8 (K1, A1) & (Ko, 42) hp (K1, A1) hip (Ko, )

A1=12,=1

x (CosK1 - r1 — wity + 6(K1, A1)] COS[K2 - 12 — watz + 6(K2, A2)])
2
= Z fdgkéi (k,2) € (k, 1) hfp(k,/l) % cosk - (ry —r2) — w(ty — t2)]
=

~~ flw
= [ (o) - ki) g cosk- (- - ol B (D)
where the averages

(cosi(ky, A1) cosi(kz, 12)y = (sind(k1, A1) sind(kz, 12))

1
= 501,1,0° (K1 — k) 3.2)
and
(COSH(kl, /11) Sin@(kg, /12)) =0 (33)

were used in the second equality. Also the polarization relation (2.8), i.e.,

2
D &g =6y - ki (3.4)

=1

was used in the last equality.

It can be easily shown by similar calculations that we also obtain
(Bi(r1.t1)Bj(r2.t2)) = (Ei(rs. t)Ej(r2. o)) (3.5)
and

(Ers By (r2 ) = [ ki3 cosk (-1 -o(u-t].  (36)

11



In quantum electrodynamics, analogous expressions can be obtained as well with
the use of the expectation values (2.16)-(2.18), and the polarization equations (2.8)-
(2.10). For example, the vacuum expectation value of two electric zero-point field at

two different spac®; andR, and two diferent timet; andt, would be,

2 2
<0|Ei(r1,t1)Ej(r2,t2)|0>= Z Zfdsklfd3k231 (ka, 1) & (K2, 12)

A1=11,=1

X Hzp(kl, A1) Hzp(kz, A2) <O |[C¥(k1, /ll)ei@)l + Q'T(kl, /ll)e_i®1]

x [alka, 2)6% + o' (ka, A2)e ] o>, 3.7)
where the form of the ZPF is given by Eq.(2.12), and
01 =Ky rp —wity,
0, = kz - Ty — woto. (38)

Note that we are not allowed to change the order of any operators in the quantum
case. Hence the expression above has four terms and each of them has to be evaluated
independently. However, we can easily see from the relations Eq.(2.16)-Eq.(2.18),
that only one term proportional ek, A1)e’ (K2, A5) is non-vanishing. Therefore, the

above equation simplifies to

2 2
<0|Ei(r1,t1)Ej(r2,t2)|0>= Z Zfdsklfd3k231 (k1, A1) & (k2, 22)

/ll:l /lz:l
X Hazp(ka, 22) Hzp(kz, 22) (0la(ks, da)er (kz, 22)|0)

X expliwity +ikg - ri) explwatz — ikz - 1), (3.9
which, with the help of Eq.(2.17), yields the desired result
— — PN/ .
<0|Ei(r1,t1)EJ(r2, t)| 0> = fd3k(5ij - kikj) 4—;; explik-(ri—rz)—iw(ti—tz)] (3.10)

12



In a similar manner, the following two relationships can also be found:

(0[Bi(r1,t2)Bj(r2,2)| ) = (O[Ei(r1, ta)E;(r2,t2)| O) (3.11)

<0 'Ei(rl,tl)gj(rz, tz)l 0> = fdak(sin K) % explik - (ry —rz) —iw(ty - t2)] (3.12)

3.2 Discrepancies between SED and QED

From the results in the previous section, we see that the expressions for the average
do not agree with each other. However, these discrepancies can easily be explained in
terms of the operator order. In random electrodynamics, the order of the fields has no

significance upon the averaging, i.e.,
(Ei(r WEj(r2 1)) = (Ej(r, bEi(r2 ). (3.13)

On the other hand, in quantum electrodynamics, the operators do not commute and the

order does matter,
(0[Ei(r1, t)Ej(r2, )| O) # (O[Ej(r1, h)Ei(r2, )| 0) (3.14)

In quantum mechanics, physical observables are expressed in tektesroitian
operators. It can be shown that if we symmetrize these operators by taking the every
possible permutations and then average the sum, there exists exact agreement between
the correlations in random and quantum electrodynamics. To show this correspon-
dence, we first notice that the correlation function (3.1) and the vacuum expectation
value (3.10) in quantum electrodynamics have the same form and the @ielsedce

is that the cosine function is replaced by the exponentials in QED.

13



Let us consider the Eq(3.10) and th&dient order of it in the electric fields,

(O r2 B (ra. 1] 0) = [ k(6 - ki) 35 explikc - (r2 = 1) = (e - )]
:fd3k(6i,~ _kkj)z—;exp[_{ik.(rl—rz)—iw(tl—tz)}].

(3.15)

Note that Eq(3.10) and Eq(3.15) are slightlffeient in that the exponent has a negative

sign in Eq(3.15). Now we add Eq(3.10) and the equation above to obtain
(0 |Ei(re. t)Ej(r2.to)| 0) + <0 |Ej(r2, t2)Ei(r 1. ty)| 0)
aay hw .
= fd3k(5ij — kik;) o {explik - (r1 — r2) — iw(ty — )]
+exp[-{ik - (r1 —r2) —iw(ty - t2)]}

= fd3k(6i,- - &k,—)z—;z cosk - (1 — 1) — iw(ty — t)]

(3.16)

Notice the presence of the extra factor of two in the last equality, which does not exist

in the SED case. This result produces the following relationship,
1, — _ _ _
> <0|Ei(r1, t)Ej(r2. t2) + Ej(r2, )Ei(r. ty)| 0>
= fdsk(&j - &kj) Z—; cosk - (r1 —ra) —iw(ty — t2)]
and the desired correspondence,

<Ei(r1, tl)Ej(rz,t2)> = % <0 [Ei(r 1, t)Ej(r2. to) + Ej(ra, )Ei(ra. ty))| 0>

= 5 [(O[Er1. 0E (2] ) + (O[Ei(r2 )E 11, 10] )

(3.17)

is obtained. It can also be easily shown that this agreement between the correlation

14



function in random electrodynamics and the vacuum expectation value in quantum
electrodynamics also holds for the other two-point functions (3.11) and (3.12) as well.
These discrepancies between SED and QED, stemming from the non-commutivity of
the quantum operators keep arising in all orders. However, regardless of the order,
if we construct the symmetrized operators, the correspondence between two theories

would be achieved [26].

3.3 Heisenberg Picture and Schroedinger Picture

In a formulation of a system in quantum mechanics, time evolution can be treated in
two different manners: we can either absorb the time evolution in the state NEor

and treat the operator as constant in time, or let the state vector to be time constant and
treat the operator as a time dependent quantity; A(t). The former is called the
Schroedinger pictur@nd the latter thédeisenberg picture In our research, we are
obviously adopting the Heisenberg picture, for our state ve€ors always fixed in

time and the time dependence is absorbed in the operators.

It is known that the dference between these two formulations is just the way in
which time evolution is handled and they are in most cases equivalent othervise.
The results and predictions of quantum mechanics areffeattad by the choice of the
formulation. Therefore, the correspondence between the SED and QED also remains
undafected by our choice of the Heisenberg picture.

Regarding the Heisenberg picture and its agreement with random electrodynamics,

Milonni# remarks the following:

The equations of motion are formally the same in the two theories. The
final step in the derivation involves a term bilinear in the zero-point elec-

tric field. In the quantum electrodynamics case we require an expectation

3A possibility of discrepancy between the Schrodinger and the Heisenberg picture has been pointed out
by A. J. Faria et al.[28]. They claim that théects of the zero-point field may be counted twice in the
Schrodinger treatment of the oscillator.

4P.W. Milonni, Physics Repor®5, No.1 (1976) pp. 1-81.
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value of this term over the vacuum field state. In random electrodynamics
we require an average of formally the same term over the random phases of
the zero-point field. The two types of ensemble average yield the same an-
swer, and therefore the same result for the van der Waals interaction. From
this view point, we might even contend that the principal merit in Boyer’s
derivation is the treatment of the problem in the Heisenberg picture, with

a consequent ease of physical interpretation.

Although this comment was made on the derivation of the van der Waals forces, our
research involves essentially the same procedure: the expectation values of the electro-
magnetic fields over the vacuum state in quantum electrodynamics, and the averages
of the fields over the random phases of the zero-point field in random electrodynamics.
The strong similarity between the Heisenberg picture treatment and random electrody-

namics is equally valid in our research as well.
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4 Evaluation of the ZPF Poynting Vector

4.1 Overview

In this chapter, the Poynting vect&t® of the zero-point field that an object sweeps
through under its constantly accelerated motion is evaluated in the laboratory inertial
frame. The object has a proper volug in its own rest frame and is accelerated
along the positivex-direction, that isa = aX. Since the Poynting vector is physically a
momentum flux, we can also find out its momentum dergéityy dividing the Poynt-
ing vector byc?, i.e.,g?P = SP/c?. Since the ZPF spectrum is Lorentz-invariant, this
momentum density is a time-independent constant under constant velocity. However,
under the constargccelerationwe consider in this research, this momentum density
will become a function of time. Therefore, once we find out this momentum density,
the force that the ZPF exerts upon the accelerated object can be determined as well by
taking the time derivative of the momentum. It will be shown that this ZPF resistive
force is directly proportional to the acceleration and directed against the acceleration.
Consider an inertial observer at rest in the laboratory frhmé&his observer will
find that the ZPF is isotropically distributed around himself, and that the ZPF Poynt-
ing vectorSP is zero, for there is no flux of ZPF in this situation. Now consider an
object moving with constant velocity along thleaxis,v = vxX. Since the ZPF spec-
trum is Lorentz-invariant, both the stationdryobserver and the observer comoving
with the object will see the ZPF isotropically distributed around themselves. How-
ever, thel,-observer will not find the ZPF of the other observer comoving with the
object isotropically distributed around himself, since the Doppfieces shift the wave
vectork depending on the velocity of the object. This of course is true for the ZPF
of the l.-observer as seen from the moving observer as well. In this situation where
the object is moving with constant velocity, theobserver will find that the object

carries a momenturp, = ymyv, and that both the ZPF Poynting vec®f and its
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corresponding momentum densi§f = S;°/c? are non-zero, which remain constant
independent of time. Moreover, if the object is under hyperbolic motion (constantly
accelerated motion), then the ZPF spectrum is not time independent any more and the
ZPF momentum seen from theobserver view point becomes a function of time (Eq.
(4.54)), and consequently the time derivative of the momentum becomes nonvanishing
(Eg. (4.55)).

The discussions above can also be explained in the same manner using the concept
of thek-sphere In evaluating the ZPF Poynting vector, we perform integratioris in
space up to the cutforadiusk; = w¢/c centered at the observation point, with the cut-
off frequencyw. associated with the ZPF spectral distribution. Every inertial observer
has his owrk-sphere spherically symmetrically distributed around himself. In the case
of the constant velocity discussed above, the observer comoving with the object will
find that the object is at the center of his okssphere, and the object appears to carry
no mechanical or ZPF momenta whatsoever. However, this situation would become
quite diferent from the point of view of thk-observer, since the object is not located
at the center of his owk-sphere. From thé.-observer’s view, the object appears to
carry both mechanical momentup = ymgv and the ZPF momentum densigf’,
which are both constants independent of time. As soon as this object get accelerated
by an external agent, both the ZPF momentum density and the corresponding ZPF
momentump?® = V,g® as seen from thé.-observer become acceleration dependent

functions of time, which, later in this chapter, we find to be

SP() . 1 8r . (2ar ha®
ZpP _ —
9. () = 2 4nc 3 mh( c ) 27r2c3dw’ “-1)
and
Vo .4V fiw®
P\ _ zp _ 0y _
p?P(r) = Vg2 = 7. 0. (1) %55 Bry: f e dw. (4.2)

SFor more detailed explanations of tkesphere, see A. Rueda and B. Haisch, Found. Phys. 28, 1057,
1998, especially Appendix C.
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Since this ZPF momentum density is a function of time, we can find the time deriva-
tives of this functiorf>® = dp?P/dt,, and we interpret that this is the force that the ZPF

exerts upon the accelerated objects.

4.2 Constant Proper Acceleration (Hyperbolic Motion)

As a basis of our analysis, we employ the following system of reference frames [18, 7]:
an inertial laboratory framk., the accelerated franf&in which the object is placed at
rest at the pointd/a, 0, 0), and a set of instantaneous inertial frarhegefined at each
of the object’s proper time. The accelerated frant® comoving with the object is set
to coincide with the lab framk whent, = 7 = 0.

The object is at rest at the poird®(a, 0, 0) in the accelerated fran®, and the ac-
celeration is in the positiva-direction. This acceleration of the?(a, 0,0) pointinS
as seen from the instantaneous comoving frayrteecomes. This is a so-called hy-
perbolic motion [29, 30] since the world line of the object under this fixed acceleration
a with respect to the instantaneous rest frdmeaces a hyperbola in a spacetime dia-
gram (see Figure 1 below) and hyperbolic functions enter into the temporal description

of the motion.

Figure 1: Hyperbolic Motion
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In this system of hyperbolic motion, the object’s position and timé.iare ex-

pressed in terms of the proper timeas

t, = a%sinh(%), (4.3)
X = Ru(7) - X = %cosh(a—g), (4.4)
Y. =0, (4.5)
z.=0, (4.6)

whereR, is the object’s coordinates as seen from thiab reference frame, which is
chosen to bec?/a, 0, 0) in bothl, andS frames wher = = = 0. Note thatx? — (ct,)? =
c¢*/a?, which is an equation for a hyperbola.

Similarly, the magnitude of the velocity.(r) with respect td. is given by

_u(r)  ldx. 1ldx/dr _ ar
P = c cdt _cdt*/dr_tanh(c)’ @.7)

where we introduced the normalized velocity We also use the corresponditg

factor, namely,

ye = 1 1 cosf{ag). (4.8)

1-432 - sechfar/c) -

Both (4.7) and (4.8) are hyperbolic functions.

4.3 Transformation of the Fields

The ZPF in the laboratory frame is given as an expansion in plane waves by

2
EPR..L)= ) f ke (K, 2) Hypw)
=1

X {a (k, ) explik R, —wt)] +a' (k, ) exp[i(k - R, — wt*)]}, (4.9)
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and

2
BIPR.t.) = ) f ok (k x &) Hzp(w)
=1

x {a(k, Dexplik-R. - wt.)] +a' (k. )expli(k - R, - wt)]}, (4.10)

whereR, andt, are the space and time coordinates of the observation point he
polarization unit vectors (k, 1) (1 = 1, 2) are orthogonal to each other and to the wave
vectork, and the functiorH,y(w) is defined in such a way that it corresponds to the

electromagnetic energy per normal mode at frequendpat is,
hw
2 -
H7p(w) = R (4.11)

Since thisl, lab frame is the ultimate reference frame where all the physical quan-
tities of the accelerating object in frame is to be evaluated, in order to obtain the
ZPF that the object is subjected to in the accelerated frame, we transform these fields
from the inertial framd, to the corresponding. frame using the standard Lorentz-

transformation of the fields, namely,

E =E B, = B,
E, = y(E2 - BBs) B} = y(B: + BEj) (4.12)

E; =v(Es+8By) Bj=1vy(B:-pBE2)
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and obtain

EP(0,7) = il f Ak { R+ yeley — Be(k x &)7] + 2y:[& + Br(k x &)1} Hoplw)

X {a/ (k, ) explik -R. - wt.)] +a' (k,)exp[-i(k-R, - wt*)]}, (4.13)
BZ(0,7) = i f Pk {R(kx &)+ 9yol(kx &)y + Be&s] + 2:[(k x &), - B8]}

X Hzp(w) {a (k) exp ik - R. — wt.)] + &' (k, ) exp [-i(k - R. - wt.)]}.

(4.14)

The arguments of the fields are taken as zero but it actually means spatial
point (¢?/a, 0, 0).

We assume that the object is subject to a constant acceleration, i.e., a hyperbolic
motion. Then as seen before (4.3-4.8), the velocity in the comoving flaméth

respect td, and the space and time coordinates of the objekt ame given by

B: = u.(r)/c = tanh@r/c), (4.15)

1
Ve = oy = seciar/0) = cosh@r/c), (4.16)
R.(1) - & = (¢?/a) cosh@r/c), (4.17)
t, = (c/a) sinh@r/c). (4.18)
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Putting these into the above expressions for the fields (4.13) and (4.14), we obtain,

EZP(0, 7) = gfd3k{>?€x + ycosh(a—g) [sy - tanh(a—g) (k x e)z]
+ 2cosr(a§) [EZ + tanh(a—g) (k x é)y]} H_ ()
X {a (k, 2) exp[i (kxg cosh(a—g) - ‘”g sinh(a—g))
+a'(k, 1) exp[—i (kxg cosk(a—g) -~ wg sinh(%))
BZP(0, 7) = gfd3k{>2(kx &)y + 9cosh(a—g) [(R X )y + tanh(a—g) ez]
+ 2cosh(%T) [(R X &)z - tanh(a—;)%y]} Hap(w)
X {a (k, 2) exp[i (kxé cost‘(a—g) - “’g sinh(a—g))

ra e pex-ifkS cost(X)-wZsm( T} @20

} (4.19)

where the quantum operatasgk, 1) ande' (k, 1) are the annihilation and creation

operators on the Hilbert space respectively, which satisfy the commutation rules

[ (k. 2),a (K, )] = [ (k.2),a" (K, 2)] =0 (4.21)

(k. ), (K, )] = 6,063 - k) (4.22)

and have the expectation values,

(0o (k, ) er (k. 1)| 0) = (0l (k. ) &' (K', 1)| 0) = O (4.23)
(Ol (k. D)’ (K, 2)]0) = 6,083k - K) (4.24)
(Ole" (k. D (k' 1)|0) =0 (4.25)

Notice here that the order of the quantum operafi@css the result as mentioned in

the earlier chapter. This problem does not arise in the classical random variable cases.

23



The expressions for the fields above, (4.19) and (4.20) are the ZPF as instanta-
neously viewed from the object fixed to the point/@, 0,0) of S that is performing

the hyperbolic motion.

4.4 Evaluation of the Poynting vector components

We now evaluate the ZPF Poynting vector corresponding to the radiation being swept
through by the accelerated object as seen from the observer at restea0(0) of I..,

using the expression for the fields obtained in the previous section, that is,

EZP(0, 7) = chﬁk{f@x + 9cosh(a—g) [ey - tanh(a—;) (k x @)Z]
+ 2cosh(%T) [az + tanh(a—g) (k x e)y]} Hap(w)
fa e vexofi (& cost{ 2 - 2 sinh( 2
ra e pex-ifkS cosn(X)-wZsm( T} @zs)
BZP(0, 7) = i‘{ f d3k{>”<(R>< &), + 9cosh(a—g) [(R X &)y + tanh(a—CT) ez]
+ 2cosh(a—g) [(Rx &), - tanh(a—g)%y]} Hapw)
fatvexpf (k& cost{ 2 - 2 sinh( 2

+a'(k, Q) exp[—i (kX§ cosk(a—CT) - wg sinh(a—g))]} (4.27)

In all of the evaluations of the vacuum expectation values for the electric and mag-
netic components of the ZPEOlEi Bj| O>,i,j = X,Y,z to follow in this section, we

need to evaluate the following quantity,

<o [l (. 0 €° + 0" (k. D) e™®) x (o (k' 1) € +a (k. )™ o> (4.28)
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where
0= kxf COSl‘(ﬂ)—w(—: sinh(ﬂ) (4.29)
a c a c
and
e = kg(f COST(E)—Q)'E sinh(f) (4.30)
a c a c

In order to evaluate this quantity, we make use of the expectation value relation-
ships for the quantum creation and annihilation operators (4.23)-(4.25), and it is found

that only terms proportional t(O |a (k, D) a’ (k1)

0> remain and all the other terms

vanish. Therefore, we have

(0|Ei(k, )B; (K", 1)

0) o €97 x (0l (k. ) @’ (K, 1)

0)

o S 63k — k')eOMeg®k) (4.31)
where

00 = k& cosh(a—T) —w sinh(ﬂ),
a C a C

@'(K) = k;% cosh(a—g) - w’g sinh(a—g).

As explained in the previous chapter, in order to assure the correspondence between
the random electrodynamics and the quantum electrodynamics results, it is required to
construct the symmetrized operators in the QED case by taking every possible permu-

tations of the field operators, that is,
1, — _ — _
<Ei(r1,t1)Bj(r2, t2)> =5 <0|Ei(f1, t1)Bj(ra, t2) + Bj(ra, t2)Ei(ra, t1)| 0>. (4.32)

However, due to the symmetrical form of the zero-point field with respect to the quan-
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tum operators, i.e.,

Ei(k, ) o { (k, 1) €° + o' (k, 1) €7}, (4.33)

Bi(K, A) o {a (K, )€ +a (K, 1)}, (4.34)
and the expectation value relationship (4.23)-(4.25), it is clear that

(0[Ei(k, )Bj(K’, 1)

0) = (0[B;(k’, )Ei(k, )| 0), (4.35)

which gives us a simple relation between SED and QED,

(Ei(k. 0Bj(k'. 1)) = (O[Ei(k. )B;(K". )] 0). (4.36)
which always holds in the cases of our interest.

Now, we proceed with the explicit evaluations of the ZPF expectation values. Let
S*P denote the ZPF Poynting vector. Th8ff, the ZPF Poynting vector that enters the
body of the accelerating object in the instantaneous comoving frareealuated from

the laboratory inertial framg,, is given by

SP= % (0|2 x BZF|0).
- % {*<0|'5sz - E;B| 0> + §(0|E By — ExB,| 0)

+ 2(0|ExBy - E,B,|0)}. (4.37)

It turns out that only the-component of the ZPF Poynting vector is non-vanishing
and the other components are zero. The detailed calculations of each component of this
Poynting vector is shown in Appendix C, and only a brief summary of this evaluation
will be shown below.

In order to evaluate the vacuum expectation value for a component of the ZPF
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Poynting vector, e.g{0|ExBy| 0), the x-component of the zero-point electric field op-

erators (4.26), that is,

2
E0.1) = Y, [ k(i Haglo)
A=1

x {a (k. 1) exp[i (kCT: cos{ ) - w2 S‘““(a_cr))]
o o] cos(%) - ()

} (4.38)

and they-component of the zero-point magnetic field operators (4.27), i.e.,

2
BZ(0,7) = Z f Ik {R(k x &)xHzp()}
=1

X {a (k, 2) exp[i (kX%2 cost(a—g) - “’g sinh(%T))

ot (k) exp[—i (ké cosh(a—g) - wg sinh(a—g))}} (4.39)

are multiplied together and the following expression is obtained:

2 2
OIEBI0y = > > f ok f d*k &k x &)xH2|(w)
=1

A=1

0 [fer (k, 2) expfi®] + o (k, 1) exp[-i®]}

—

x {or (k' 1) exp@] + o (K, ) exp[-i©]} o>, (4.40)
where
0= kxg cosh(%) - wg sinh(a—g) (4.41)
and
0 =1,.% cosh{ ) - S sinn(X). @.42)

The above expression has four terms, but only the term that is proportional to

(Ol (k. D a’ (K, )

O> remains as in (4.24), and the above expression is simplified
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to

2 2
OIEBI0 =) ) [k [ delk x&)Hw)

A=1r=1

x (0 (k, 4) " (', )| 0) exp [O(K)] exp[ i€’ (K')] . (4.43)

with the use of the expectation values

(0o (k. ) er (K, )| 0) = (0l (k. ) &' (K', )| 0) = O (4.44)
(O (k. M)’ (K, 2)]0) = 6,.46% (k - K) (4.45)
(Ole" (k, ) er (K", 1)] 0) = 0. (4.46)

Since the term in the second line in (4.43) js.6° (k — k") expi®(K)] exp [-i®’ (K")],
Eq.(4.43) becomes

2 2
(0|E4B,|0) = Z Z f e f d*k &k x &)xHZ(w)
A=1r=1
x8,.06% (K — K') expli®O(K)] exp[-i®’ (k)] , (4.47)

which, after one integration over thesphere, reduces to

2
(OIEXBA0) = f d*kéx(k x )xHZ(w). (4.48)
A1=1

With a use of the polarization formula (A.7) derived in Appendix A, we find that
2 ~ ~
Yalkxax= > euk=0, (4.49)
=1 k=xy,z

and after substituting this result into the equation above, it is conclude(DiigBy| 0) =
0.

The remaining eight components of the Poynting vector can also be evaluated in a
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similar manner (for detailed calculations, refer to Appendix C), and it is found that only
the following two terms remain non-vanishing, each of which has the same magnitude

and in the opposite direction to each other:

3
(0]E,B,]0) = —4—; sinh(z%T) %dw, (4.50)
and
3
(0]EB,|0) = i;sinh(z—?)f%dw. (4.51)

With the results above, the Poynting vec&PF (4.37) becomes

~ C
S = % (0|EZ"(©.7) x B0, 7)|0),

. C8r . [2ar fiw®
= _X4_7T§ S|nh(T) mdw (452)

This represents the energy flux, i.e., the ZPF energy that enter the uniformly acceler-
ating object’s body per unit area per unit time as seen from the observer at rest in the

inertial laboratory frame,.

4.5 Derivation of the Inertial Mass

In the previous section and in Appendix C, all of the Poynting vector components
(0|EiBj| 0) wherei, j = x.y, zwere evaluated and it turned out that all the components
vanish except two, and the ZPF Poynting vector turns out to havexsodynponents
(4.52).

We can also find the momentum density, i.e., field momentum per unit volume that
the field possesses at the object positiaf,d, 0) in the accelerated fran®; at object

proper timer and estimated from the view point &f. For this purpose, we divide
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S:P(r) by ¢?, and obtain

SP(r) .1 8r . (2ar hw’
P\ _ _
g (r) = = x—ﬂC—smh(—C )f chda). (4.53)

The total amount of momentum due to the ZPF radiation inside the volume of the
object and evaluated in the laboratdryframe is simplyg:® multiplied by the volume

V.., which gives

PEPE) = VoG = 22 0) = x5y [ o (4.5)

where equations (4.7) and (4.8) and the relation sina 2 sinhx coshx were used.

At proper timer = 0, the time in the laboratory inertial franhe= y.7 is of course
also zero, and the Rindler frang&and the laboratory framk exactly coincide mo-
mentarily, and the object locatiorg?(a, 0, 0) of S, matches the observer’s position in
his laboratory framd, as well. If the object is moving at a constant speed, lthe
observer will find the ZPF momentum of the object to be timdependentonstant of
motion. However, under the hyperbolic motion that we consider in this research, the
object appears from the view point of theobserver to be carrying a timdependent
ZPF momentunpP(4.54), due to the acceleration of the object. Since this ZPF mo-
mentum of the object as observed in thérame varies with time, we can evaluate the
time rate of change of this momentum,
o 2 _ 1 dp”

¥ =

dt. — y, dr |, do

o [ S 4.55
X132 ) 223%?|? (4.55)

_ % [4Vo ha)3
0

ThisfP is the force exerted on the object by the ZPF radiation as seen in the labo-
ratory inertial framd, att. = 0. We note here that this force is directed in the opposite
direction to the object’s motion, and its magnitude is proportional to the object’s accel-

eration.
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Moreover, the scalar quantity,

Vo

3
= f n(w)%dw] (4.56)

o

has a dimension of mass and we interpret this as an expression of inertial mass arising
from the interaction of the object with the ZPF. The numerical factor/8fldas been
neglected here since a covariant analysis in Ch.5 shows that this factor vanishes. We
have also included in the expression above a frequency-dependent interaction function
n(w), ® such that O< n(w) < 1, indicating that only a fraction of the zero-point energy
contained inside the object’s proper voluWgmight be interacting to contribute to the
inertial massn.

We evaluated the Poynting vector of the ZPF radiation field that an object under a
constant acceleration (hyperbolic motion) sweeps through as seen from the laboratory
framel.. From this Poynting vector, the force that ZPF background radiation fields
exerts upon the accelerating object is determined. This fifairns out to be in the
opposite direction to the object’s motion, and its magnitude is found proportional to the
acceleratiora. This linear relation between the ZPF reactive fdideand acceleration
a of the object is analogous to that between the temperature and acceleration in the
Davies-Unruh fect,” implying that the ZPF possess a structure which reacts against
acceleration. We conclude, based upon the above results, that this reactive force be-

tween the accelerated object and the ZPF background radiation is the origin of inertia.

6A recent development on thisfficiency” or “interaction* function(w) is given in the reference [31],
where Rueda and Haisch tries to expla{w) in terms of the summations of all the resonant cavity modes
broadened by the Lorentzian broadening factors.

7In both the Davies-Unruhfect and in our analysis, the results obtained are proportional to the accel-
eration of the object under hyperbolic motion. This result seems to stem from the property of the quantum
vacuum that reacts against the acceleration. In this respect, our result and that of the Daviesfidaruh e
appears to share the same roots. A derivation of Davies-Urifeti é given in Appendix F using the same
approach taken in the present research, and the calculations indeed look similar to those in Appendices C
and D.
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4.6 Momentum Content Approach

In this section, the ZPmomentum contentithin the object will be evaluated, rather
than themomentum flugbtained in the previous section. Lggtdenote the momentum
density inside the object under the hyperbolic motion. In a short time intatyathe
momentum per unit volume in the interior of the object will increase by an amgnt

due to its accelerated motion.This increase in the object's momentum content must
come from the surrounding ZPF, that is, the amount of the background ZPF swept
through by the object in the same time interal. This amount of the momentum flux
-g’?is the quantity we have just calculated in the previous section, and it is expected
that the relation

g. = —g" (4.57)
is to be obtained. For this purpose, we like to evaluate the following quantity,

S, .1
— = X=

~ C
9 = %G = czﬂ<0

EZP(0,7) x BZP(0, 7)) o)x (4.58)

where we only consider thecomponent of the Poynting vector since the motion is in
this direction. The momentum densiy and the associated Poynting vec&rare to

be evaluated in the laboratory frarheat the object’s position at its proper timei.e.,
c . (ar . ar

t, = —smh(—), X, = Ri(1)- X = — cosf‘(—), Y.=0, z =0, (4.59)
a c a c

as before, since the lab frameis the ultimate reference frame where all the physical
guantities are to be evaluated.

However, since we like to evaluate the ZPF momentum content inside the body of
the object which is instantaneously at rest in th&ame, the integrals are to be taken

in the object’s instantaneous rest fraime Therefore, in order to express the quantity

(0

EZP(0,7) x BXX(0, 7)| 0>X in terms of the ZPF components in theframe, we apply
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(inverse) Lorentz transformations to the ZPF in th&ame, namely

El = Ei Bl = B;L
E> =y(E, +BB;) Bz =v(B;-BE))
Es =y(E; -B8B)) Bs=y(B;+pE))

and obtain for the fields

2
SUOLEDY f B {R&x + Fy-[& + Be(k x &), + 2y:[& — Be(k x €)1} Hyplw)
=1
x{a(k, )explik-R, - wt.)] +a' (k, ) expl-i(k - R, - wt)]},  (4.60)
2
BIPO.7) =)’ f Ak {R(k x &) + Fy-l(k x &)y - Br&r] + 2. [(k x &), + B3]
=1

X Hzp(w) {a (k, ) exp ik - R. — wt.)] + o' (k, ) exp [-i(k - R, - wt.)]}.
(4.61)

With this Lorentz transformed ZPF components, we are going to evaluate the ZPF

expectation values,

(0

EZ%(0,7) x BZ"(0,7)| 0), = (0|Ey.By. — E».B,.

0) (4.62)

that we use in the evaluation of the ZPF momentum degsiand the ZPF momentum

p.. The mathematical treatment of this momentum flux approach is similar to that of
the momentum flux approach, but these two methods are independent of each other.
0
wherei, ] = x,y,z are given in Appendix D, and it turns out, as expected, that all the

O) and <0 |E..By.

Detailed calculations of the expectation values for all nine ZPF compo(@k&ts Bj.

terms vanish excep(10|Ey* B,. O>, and that these two terms are re-
lated by

(O[Ey.B..

0) = - (0|E.B.| 0), (4.63)
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a similar result as that obtained in the momentum-flux approach. The non-vanishing

expectation value is found to be

8t . (2a fiw®
(0|Ey.B,.|0) = gsmh(%)fﬁdw, (4.64)

which yields

(0

EZ%(0,7) x BZ"(0,7)| 0), = (0|Ey.By. — E».B,.

0)

= 2(0|E,.B.|0)
16n .  (2ar hw®
= ?Slnh(T)fmdw, (465)

and the corresponding ZPF Poynting vector

S, =X

(0

. [2ar fiw®

which represents the ZPF energy contained inside the uniformly accelerating object’s

EZ%(0,7) x BIX(0,7)| 0)

=X

w|& §lo

body per unit area per unit time as seen from the inertial observer at rest in the labora-
tory framel..
Following the same procedures as the momentum-flux case, we can find the ZPF

momentum density of the object,

.4 . (2ar fiw®
C2 = X3_C S|nh(T)fmdu), (467)

and the ZPF momentum contained momentarily inside the volume of the object as

seen from the inertial observerlinframe, which can be found by multiplying the ZPF
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momentum density above by the object’s volumé.irV, = Vo/y,

p* = g*V*
M4 2ar fiw’
_xy 3Csmh( c )f47r20°’dw
AV hw®
= R—y) — 4.
Rz BV f 520 (4.68)

where the relation sinh2= 2 sinhxcoshx was used again, together with the relation
coshér/c) = y and sinhér/c) = By. The rate of change of this momentum with

respect to time is the forde the object under hyperbolic motion is exerting against the

ZPF,
Ny [ ho?

dp. 1 dp. .
f = = = —_— _—
. X[ 32 ) 272

dt. — y, dr

dw] a (4.69)

Comparing this expression with tfi§’ obtained in the previous section, Eq.(4.55), we
immediately notice thai® = —f,, which is a reinstatement of Newton’s third law, the

ZPF applies equal and opposite force against the accelerating object.
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5 Covariant Approach

In the previous sections, the electromagnetic zero-point-field (ZPF) Poynting vector
S = £ (E?Px B?P) and its vacuum expectation valugs < OlEprJz”|O > were eval-
uated. In this section, these quantities are to be evaluated using a covariant method.
It will be shown that the factor of /8 for an expression of inertial mass, obtained
earlier in the non-covariant method, vanishes in this fully covariant approach. This is
expected because the relativistic momentum of an object with mas®uld beymy,
not 4/3ymv.

Historically, it was Lorentz[32] and Abraham[33] who obtained thi8 factor in
their study of the classical theory of an electron, which gave incorrect kinematical re-
lationship between the momentum and velocity of an electron. However, it was shown
later by Fermi[34][35], Wilson[36], Kwal[37], and Rohrlich[38] that the extra factor of
4/3 should not be there for the momentum of an electron. This incorrect factor comes
from the incorrect definitions of relativistic energy and momentum. In our analysis, it
will be shown, following the approach by Rohrlich[39], and Rueda and Haisch[7], that

this factor of 43 indeed does vanish.

5.1 Covariant Approach for the Evaluation of the Poynting Vector

In this section, the Poynting vector is evaluated in a covariant method. The Poynting

vectorSis an element of the symmetrioallectromagnetic energy-momentum tensor

-U -Sy/c -§y/c -§;/c
@I‘V _ _SX/C TXX Txy TXZ (51)
-Sy/c Tyx Tyy Ty,

_SZ/C TZX sz TZZ
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In the above, the time and mixed space-time components are

0% = si (E?+B?) =-U, (5.2)

T

and

; 1
0% = —— (ExB), (5.3)
Ar
whereU is the electromagnetic energy density and

c

S=
An

(E x B) (5.4)

is thePoynting vectorwhich is also an energy flux density.
The space part of the tens@l is called theMaxwell stress tensovhose compo-

nents are given as
1 1 .,
Tij =E EiEj+BiBj—§(E + BY)dij |- (5.5)
Now let us consider the quantity,
1
p= f &"dor, (5.6)

the integration of the electromagnetic energy tensor over a spacelikegplginen by
the equation

n“x, +cr =0, (5.7)

andr¥ is the unit normal vector of the plane, which is necessarily timelike,
n,n = -1 (5.8)

Any instant of an inertial observer is characterized by this spacelike pteared the
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unit normaln”. For example, whem” = (1;0,0,0), r = t, then the spacelike plane
o describexyzplane at the instartt If n* = v*/c, wherew is the four-velocity with
which the inertial frameK’ is moving with respect t&, the planer is tilted in K, and

a Lorentz transformation ti’ transformss- to the planer = t’ in K’, which coincides
with the xyzplane inK’. Thus, the choice a# = W /c describes the three-spate- r

in K’, as seen b¥.

The surface element on such a plane is given by the vector

do* = ndo, (5.9)

and its invariant area element can most easily be determined by the use of the unit

normalr¥ = (1; 0,0, 0) in the example above as,

do = —n,do* = dxdydz (5.10)

because in the rest frame where the unit normal is necess#rity (1;0,0,0), the
spacelike surface is a simpleplaneperpendicular to the time axis, i.e., thgzplane
whose volume element isxdydz.

Now let us go back to the expression (5.6). In the particular Lorentz frame whose

surface normal is given by’ = (1,0, 0, 0), the components d# can be given explic-

itly as

pCo) _ ( %Wm)’ p(O)) (5.11)
with

WO = f UO ¢y (5.12)
and

1
0) _ 0) 43
PO - gfg ax. (5.13)

In the case of interest to us, that is, the velocity is along the positdiesction, the
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surface normal is given by

n” = (y;yph), (5.14)

wheref is a unit three vector, and the equation (5.6) takes the following forms:

P = (%w P) (5.15)
with
W=’nyd0'—¥fS'ﬁd0' (5.16)
and
P= lzf&jmﬁ T - Ado, (5.17)
c c

where T is a Maxwell stress tensor whose components are given by Eq. (5.5).

The derivation of the above equations is given in Appendix E. At this point, we
identify P# of equation (5.6) as the momentum four-vector of the electromagnetic field.
Note in passing that extra terms appear in (5.16) and (5.17), which can also be obtained
from the corresponding Lorentz transformation with a velogityhose magnitude is
vB and whose direction i8. Also, it is to be noticed that the two expressions coincide
if and only if y is 1.

Abraham and Lorentz used the expressions (5.12) and (5.13) as their definitions
for the energy density and the momentum, and they were led to the incorrect result for
the momentum of an electron which includes the incorrect factoy ®f Wowever, as
we have already shown, the equations (5.12) and (5.13) are only valid in the particular
Lorentz frame where is 1. It will be shown that with the use of the correct forms
(5.16) and (5.17) for the energy density and the momentum, this incorrect fac8 of 4

is reduced to unity.

39



5.2 Evaluation of the ZPF Momentum Content

We are now ready to evaluate the momentum in a covariant method. This can be done
in two different approaches, i.e., the momentum-flux approach and the momentum-
content approach, just in the same manner as in the non-covariant method. However,
since the two treatments are very similar except the signs, only the momentum-content

approach will be shown here. The expressions that we need to evaluate are

7
P = Ef(u v.gds (5.18)

T v
p=7f(g+ 2 ]d3cr (5.19)

In the above expressions, the integration is taken over the volume of the object with

the volume elementl®c, which is an invariant hypersurface element equal to a 3-
space volume element. Since we assume that the volume of the object is so small, the
integrand is considered constant and we just multiply it by the object voligres has

been done in the non-covariant method. Therefore, we evaluate the quantity

T..v
b :y[g*+ = *]vo (5.20)

This is the momentum inside the uniformly accelerating object in the comoving frame
I, as seen from the lab inertial frarhe T in the above equation is the Maxwell stress
tensor whose components are given by the Eq.(5.5). Therefore, the dot proéﬁct of

with the velocityv = vXin the above equation yields the column vector

TXX*V

K ~ ~ N
T, -v= TyxV | = (RTwxe + YTy + 2T )V (5.21)

TV
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with Tjj.. given by (5.5). The components of the ZPF included in the expressid;for

are the fields inside the object as seen from the lab flamEherefore, to obtain these
zero-point field components, we apply the Lorentz transformation from the object in
the instantaneous comoving frarheto the inertial lab framé,. This gives, for the

zero-point field components,

2
EXP(r;¢*/a,0,0)= >’ f oK (& + 9y:[&y + Bo(k x &)2] + 2:[& - Bo(k x &)1}
=1

x Hzp(w) {a(k, ) expliot + ik - R,) + ' (k, 2) explot — ik - R.)} .
(5.22)

2
BI(r;¢%/a,0,0)= >’ f A (R(Kk x &)« + Fyel(k x &)y = Bl + 2y:[(k x &) + B4,
A=1

x Hzp(w) {ak, 2) expiot + ik - R,) + o (k, 2) expot - ik - R.)}.
(5.23)

These are the zero-point field components that are contained inside the object’s proper
volume in the comoving framk. as seen from the observer in the inertial laboratory
framel... With these ZPF components, we are now ready to evaluate the vacuum expec-
tation value for each term in the Eq.(5.21). It is shown first thaythedz components

of the expectation values féTr:-V vanish. This is physically reasonable since the object

is moving in the positive-direction.

We have, for thg-component,

(0[Tyx|0) = % (0|Ey.Ex. + By.By,| 0) (5.24)
and the first term gives
(0|Ey.Ex| 0) = (Oly:[Eyr + BB]Ex| O)
= 7+ (0|EyrExc] 0) +7:B: (1B Excl 0). (5.25)
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The expectation vaIuéD|EyT EXT| O>, however, involves the factor

2
Z AyAx = _Rykx = _kxky (5.26)

which was shown previously to vanish after angular integration. Similarly, the second

expectation value0 |B,. Ey.| 0) involves the factor

2

Z &(kxe), = -k (5.27)

=1

which also vanishes upon integration. The second term of-tttamponent ofﬁ -vin

the Eq.(5.24) can also be shown to vanish in a similar manner. We have

0) = (O]y+[Byr — BEx]Bx| O)

= ¥ (0[ByeBye| O) = ¥eB: (OIErByrl 0). (5.28)

(0[By. Bx.

The first term<O|ByTBXT| O> involves the factor

Z (kx e)y (kx &) = —kyks (5.29)

2
=1

and the second terg® |E,, By, | 0) includes

2
> &(kxe) =k, (5.30)

=1

both of which have already been shown to vanish. Therefore, as we have expected, the
y-components o(Tr_: -V, i.e., the equation (5.24) vanish. It can also be shown easily, in
a very similar manner, that thecomponents oﬁ'_: - v also vanish, which leads us to

the conclusion that the only contribution <T71) - v comes from thex-component. We
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have for thisx-component

1
(0106l 0) = <0

Ex«Exs + By Bxs — %(Ef + Bf)

y

_ 1 2 2 1 2 2
== (0|EZ + B}, 0) - & (0|e? + B2|0) (5.31)
where
EZ = EZ + EJ, + E, (5.32)
and
B? = B, + BY, + B, (5.33)

Each component of the zero-point fields is given by the Lorentz transformations (5.22)

and (5.23) as

(0]EX.

0)
0)
0)

(0|EZ|0) (5.34)

(o]B%,

0|B%|0) (5.35)

(o€

(Oy<(Eyr + B-Bur)y<(Eyr + B-Bx)| O)

72 (0|EZ| 0) + v252 (0|82 | 0) + 228 (0|Ey-Bx:| O) (5.36)

and similarly for other components

(0[8].|0) = v2{0[B5| 0) + v 0[EZ| 0) - 2v%5- (0[ExBy:[0)  (5.37)
(0[E2]0) = 2 (0[E2] 0) + 262 (0]85.|0) - 2028- (O]ExB|0)  (5.38)
(0|B2.|0) = ¥?(0|BZ| 0) + 282 (0|E}| 0) — 2y%B- (0|Ey-Bx| O) (5.39)

Using these relationships, we can now evaluate the terms in the Eq.(5.31). From (5.34)
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and (5.35), we have for the first term in (5.31),

+ (0lE2 +82]0) = .- (0]E2, + B3| 0)

1
= - (0[e2+ B20), (5.40)
where the relation

(0lE210) = 5 (0l€2]0) = 5 (0lE7]0) = (o]e¢ o) (5.41)

with i = x,y, z, was used in the last step. Since we also have

1 hws
U=go (0|e?+ B2 0) = 523 (5.42)
we obtain
2 2 fiw?
(0|E? + B2|0) = 8r 52 (5.43)

Upon substituting the above equation into (5.40), we find that the first term of (5.31)
becomes

3
0)=2 [ 22 qu. (5.44)

1

For the evaluation of the second term of (5.31),

1
2 2 2 2 2 2 2 2
E?+B%0) = §(0|Ex,ﬁ+ By + Eg. + Bj, + E5, + B,

1
& (O

0). (5.45)

we substitute the relations (5.34) to (5.39) into the above, which gives

E? + B?

0)

_ 8_1 [(0]E2/|0) + (0]82,|0) ++2 (0|2 + E2 + BZ + BZ|0)

1
5 O
+y262(0|EZ, + EZ + BZ, + B%|0) + 2y23. (2(0|EyBx — EBy:|0))| (5.46)
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Both terms in the last equality are zero sh(@eszyT BZT| O> involves the factor

2

Z & (kxe), =k (5.47)

=1
and the second ter(r®|EZTByT| 0> involves the factor

2

D& (kx e)y = —ky, (5.48)

=1

both of which have been shown previously to vanish after angular integration. This re-
sult is actually an expected one, since the term in triangular brackets in the last equality
is proportional to thex-component of the zero-point field Poynting vectorl jnand

this frame is comoving with the object. For the evaluation of other terms in (5.46), we

combine the relations (5.41) through (5.43) and obtain

A hw?
2 _ 2 _
(0|gZ|0) = (0|B%| 0) = 3 | 32zt (5.49)
Since the above relation holds for any components foK, y, z, the expectation values

of all the squared fields have the same value given above, and the equation (5.46)

simplifies to
1 2 21q\ L 4r fiw® 2 2.9
g(O E*+B* O>—§§ Tc3d(1)|:1+1+4’y.r+4’y.rﬁ.r]
1 hw® 2 2.9
= :—)) Tcsda) (1 + 2’)/T + 2')/7.[3.1.) (550)

By combining the above results, i.e., Eq(5.44) and Eq(5.50), we can now evaluate

45



(0|Txx!| 0). The equation (5.31) now becomes

O el 0) = 2= (OIE 0)—8i( )
f LI f o (1+272 + 2787)
Hi L o (1- 22 - 24782 (5.51)

where (5.44) and (5.50) were used. This gives

hw?

T v 1 1
5 =X | 5ogte(l- 27 - 2)%8) (5.52)

C2

which is used to find the momentum, together with the valug gbreviously found to

be

1 fiw®
2
0. = X3 93#7 fmdw (5.53)

Using the two results above, we can finally obtain for the momentum

T v
P. =7{g*+ %]Vo

. 1 fiw® 1
= X?’Vocﬁrg f%dw— [473 +1-2y2- 273.33]

= )A(yVoCﬁTC—]; 2712C3dw_ [l +2y2 (1 B )]

o 1 fiw®
= X')/VOCﬁT? md(u (554)

where the last equality is due to the cancellayé(l — 82) = 1. We note here that the
extra factor of 43 we obtained earlier in a non-covariant method vanishes as expected
in this covariant approach.

We can also easily check the zero-component of the momentum four-vector, given
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from Eq.(5.18) as

Pozy—gf(U—v-g*)do-
o 0)

E2+ B2
8

=

~c - CB:0. | Vo (555)

Since both terms in the above equation have already been found in (5.50) and (5.53),

after substituting these results, we obtain

Mo [ ho® 1
po _ Vo f Y Loy (L+2)2 +2)%82 - 4y%67)

c 2n2c3 3
Vo [ hw? 1 ) )
= | 52ades3 [1+2/2(1-p2)
_v:Vo hws
== Ry dw (5.56)

The inertia reaction force that is exerted upon the object by the ZPF as skeés in

2P = _%
__1dp.
e dt
V fiw®
=—(C—§fn(w)mdw)a (5.57)

With the identification of
_ | Yo f @7 40 (5.58)
m = c? L 2r2c3 '
as the inertial mass, we can obtain the standard four-momentum

P = mv = (mcy.; mvy:) (5.59)
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where

V= (Cyr; V1) (5.60)
We can also obtain the expression for the four-force as

_dp 1dE dp

d
F' = E(mc%;p)Z%(Ea.a)=yr(f-,BT;f)z(F~,BT;F) (5.61)
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6 Summary of Contributions

This summary serves as a guide to show which part of this dissertation should be cred-
ited to the present author as its original contribution.

The basic idea of this dissertation, namely, inertia or inertial mass may have its
origin in the interaction between ZPF and accelerating object was first proposed by
Rueda, Haisch, and Putfi¢g6], and later in a dferent approach by Rueda and Haisch
[7], both of which within the framework of SED. This dissertation follows the same
approach as [7], but all the calculations of the vacuum expectation values are done with
the framework of QED, using the creation and annihilation operators. These calculation
are shown in Ch.4 and in Appendix C and D, and these are the present author’s original
contributions.

In Ch.3, several dierences between SED and QED formulations are explained.
This has been done previously by Boyer[26], but the calculations and derivations are
given here in more detail. Also, there exists a factor & discrepancy between SED
and QED when the same calculation is performed in these tikereint methods. This
point has been made explicit and explained in Appendix B.

In Ch.5, the ZPF reactive force and the inertial mass are derived in a covariant
method. The basic techniques employed in this chapter comes from Rohrlich [39].
Actual calculations of the ZPF force has been done by Rueda and Haisch [7] in SED
formulation. Calculations in QED format were performed for the first time by the
present author.

Finally, derivations of Davies-Unruhffect is given in QED formulation in Ap-
pendix F. Boyer also did this [40] for some of the non-vanishing terms. In this disser-

tation, most terms have been calculated in more detail.
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A Derivation of Polarization Formulae

A.1 Overview

The random radiation, as in (2.1) and (2.2), is expressed as a sum over two polarization
states(k, 1). Let us consider the third unit vectet = k = k/k, wherek is the propa-
gation vector. For each propagation vector, there correspond two mutually orthogonal

polarization vectorg¥"andé®. Then these three vectors form an orthonormal triad,

3 3
Z : ,\/1 _ Z :,\/1,\ _Alal | A242 | A3~3 _ o

= Eifj{l—fifj'i' i€j+€iEj —6”, (Al)
=1 =1

with the following properties

& e =6m ILm=1,23 (A.2)
k=0, m=12 (A.3)
k=é'x&. (A.4)

In the above equations, the polarization componghtsé to be understood as scalars.
They are directional cosines, e.g., the projections of the polarization unit vectors onto
thei-axis,

Al Al o
§ =€ X,

=%,z (A.5)

This same convention will also be used with thenit vector, i.e.k, = k- & We also

omit from now on the superscripfisfor simplicity, and use the notatic(@*)i =§
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In this appendix, the following three identities are derived:

2
Z &éj = oij - kik; (A.6)
=1
2
Z Ai (RX %)] = Z 3iijk (A.7)
=1 k=xy,z
2
Z(Rx é) (Rxe)j = 5ij — kikj (A.8)

The proof of each identity is given below.

A.2 Derivation of Each Formula

A21 Y2 &g = o -k
2 A A
proof : Z €i€j = (eilejl + eizel-z + ei?’ef’) - ,36]3 = 6ij — kik; (A.9)
A=1

A.2.2 Zi:l Ei (& X g)] = Zk:x,y,z SijkAkk

proof: Rewriting the cross product using the Levi-Civita symbol, we obtain

2 2
Z @i (R X @)J_ Z Ai8j|mR|Am (A.].O)

=1 A=1
= &ym (e'ken, + e2kel) (A.11)
= &jim (&em + &7¢h) k (A12)

Using the previous identity (A.9), this equation becomes,

2
Z & (R X @)J_ = €jim (5im - AKRm)K (A.13)
=1

= 6im&jmK — &jimki Kk (A.14)

The second term can be shown to reduce to zero, using the property of the Levi-Civita
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symbol as follows:

eimkikikn = kigjmkikn = ki (kx k) =0 (A.15)

]

Therefore, we have proven the identity

2
Zéi (RX3)J. = gjik = ek = Z eijkki (A.16)

=1 k=xy,z

after relabeling the dummy index.

A.2.3 Zi:l (RX E) (kX é)] = 5”' - Ak.RJ

i
proof: Developing the original equation, we get

3 (kx ) (kxd) = (k22 (kx &) +(kx 2, (<) (A7

=1

Using the cyclic identity (A.4), each of thé x &) terms can be expressed in a single

term as
2 ~ ~
D (kxe) (kxe) =& +(-&')(-4) (A.18)
=1
= ¢lel 4+ e2e? (A.19)
The last term in the above equation is just the sum&fover the polarization index,

which is actually the first identity (A.9) that we proved in this section. Therefore, it is

concluded that

2 2
> (kxe) (kxe), =) @é =8 - kk (A.20)
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B Derivation of the Spectral Function H,(w)

B.1 Overview

The electromagnetic zero-point radiation indtassicalform is expressed in terms of

a superposition of plane waves as [22],

2
E(r,t) = Z f d®ke(k, D)hyw) cos Kk - 1 — wt — 6(k, 2)] , (B.1)
A=1
2
B(r,t) = Z fd3k(|2 X &) hyp(w) cosk - 1 — wt - 6(k, 1], (B.2)
A=1

and in the QED formulation as [26, 27]

2
EEEDY f d®ke(k, A)H,p(w)
=1

x [ (k, 1) expliot + ik - 1) + o' (k, 2) explwt - ik -1)|, (B.3)

2
B(r.ty=> f k(K x &)H_p(w)
=1

x [ (k, 1) expliot + ik - 1) + o' (k, 2) explwt - ik -1)].  (B.4)

They are summed over two mutually perpendicular polarization st¢dked). The

two states are labeled by a dummy index 1,2, and orthogonal to the wave vec-

tor k as well (c.f., Appendix(A) for details.) In the classical case, the random phase

6(k, 1), which is uniformly distributed over the interval,@r), independently ok and

A is introduced to generate the random nature of the radiation. In the QED case, the

quantum annihilation and creation operatoré, 1) ande' (k, 2) are used instead of
the cosines.

Our main interest in this chapter, however, is on the spectral funétjgfw) and
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h,p(w). This spectral function is introduced to set the magnitude of the zero-point

radiation. Its value in the classical form is given in the literature (e.g., [22]) as
hiw

However, its value in the QED formulation is not found in the literature. Boyer in his
pioneering paper on the ZPF in the QED formulation [26] uses the \Jelfg(eu) =
hw/4n? without explicitly mentioning any justification. It will be shown below that the

magnitude of this spectral function in the QED formulation is indeed

hw
szp(w) =2 (B.6)

B.2 Determination of the Energy Density

We first determine the energy density of the zero-point field in both the classical and
the quantum formulations. In the classical SED, #8verageenergy density can be

found by calculating

U 1) = = (E*(x.1) + BX(x. 1))

Ll Ple

T

2 2

5 5 1
> f d*ks f dkot(ka, d1) - &(ka, ADNzp(@n)Nzpwz) 561,1,6° (ki — k2).
A1=11,=1

(B.7)

The factor of two in the second equality comes from the assumed equal contributions
from the electric and magnetic components, and the two delta functions at the end come

from the average value of the cosine function, namely,

1
(cosh(ky. A1) cosi(kz, 42)) = 501,1,6° (K1 — Kz). (B.8)
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Considering again equal contributions from each of the polarization stated, and

2, the Eq.(B.7) becomes,

1 2
3,2 - 2
(U) = gr;fd Ke(k. ) - &(k., )h2()
1
-z f PKIE (w)

_ 1 22
= fdwan) hyp(w), (B.9)

where the variable of integration was changed filota w using the relatio = k/c.

It is to be noted here that the expression above is independent of any space or time
coordinates, which shows tHemogeneityproperty of the ZPF energy density per
frequency mode.

Since the energy density can also be written as
<U>= fp(w)dwdQ, (B.10)

we compare this equation with Eq.(B.9) and identify the classical spectral energy den-

sity per solid angl&2 in the angular frequency interval betweerandw + dw as
Pel(w)dw = hap(w)dw. (B.11)

where the subscriftl stands for classical, to distinguish this from the QED case.

Now we find the expression for the energy density in the QED formulation. Fol-
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lowing the same procedures as the SED case, we obtain

©JU(X, 1) 0y = < [Ec.t) + B (x.) >

= o Z Zfdaklfd3kze(k1,/ll) é(k2, A2)

A1=11,=1

X Hap(w1)Hp(w2)e® €% (0]a (ka, A1) @' (ka, 42)| O)

4 Z Zfd?’klfdskgé(kl, A7) - E(k2,/12)

A1=12,=1
X Hopw1)Hzp(w)e®1€71926),1,6° (k1 — ko) (B.12)
where
@1('(1) = kl - X — w1t (813)
O5(kz) = ko - X — wot (B.14)

and the expectation values

(0o (k. ) er (K, )| 0) = (0l (k. ) &' (', 1)] 0) = 0 (B.15)
Ola (k, ) a’ (k',2)|0) = 6,63k — k") (B.16)
o] ) = 0100°

(Ole" (k. D (k' 1)|0) =0 (B.17)

were used. After integrating over thesphere, and taking again equal contributions

from each polarization index = 1 and 2 into account, Eq.(B.12) simplifies to

(0JU(x,1)|0y = f dPke(k, 2) - &(k, A)HZ(w)e%e™®

= f dPkHZ (w)
1

=53 f dwdQw?HZ(w). (B.18)
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Comparing this with the Eq.(B.10), we can identify the energy density per solid angle
dQ in the bandwidthdw in QED formulation as

202,
poe(w)dw = RHZp(w)dw. (B.19)

B.3 The Density of States

The energy density per bandwidtly determined in the previous section can also be
expressed in terms of the density of states. This technique is a standard one and can be
found in many textbooks. The treatment below basically follows that by de la Pena and
Cetto [19] and Louisell [27].

Let dN(w) represent the number of ZPF modes of frequedncthat can be ac-
commodated inside a box of length Then the total energy inside the box can be
expressed as a product @ (w) and the energy of each single mode, which leads to

the expression for the ZPF energy density:
plw)dw = dN(w)eo(w)/V (B.20)

where gg(w) is the energy of the ZPF spectrum per modg2fiw andV = L3 is
the volume of the box. The density of states can be obtained from purely geometrical
considerations as follows.

The number of normal modes in a given frequency range inside a small element of
volumed| dl,dl; is

dN = 2dl,dl,dls, (B.21)

where the factor of two comes from the presence of two polarization states in each

direction, and the volume incremedit, i = 1,2, 3 can be found from

k = Z—L"(|lz+ 157 + I3K). (B.22)
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The set of numberdy( I, I3) represent the number of modes that can be accommodated

on each side. Using Eq.(B.21) and Eq.(B.22), we can obtain

L3 Ly 5 Ly,

dN = 2(2—ﬂ) dkdk,dk; = Z(Z) &k = 2(27) KK, (B.23)

Changing the integration variable ¢ovia the relation

0)2
K2dk = gdw, (B.24)
Eq.(B.23) becomes
dN = 2(i)3 W?dwdQ (B.25)
e . )

Note that, since this density of modes was derived from purely geometrical point of
view, this expression stays the same regardless of whether the fields are treated classi-

cally or guantum electrodynamically.

B.4 Magnitude of Spectral Function

Substituting the density of modes obtained above divided by the solid dfigiato

Eq.(B.20), the expression for the energy density may be determined as

p(w)dw = dN(w)eo(w)/V

o)

() 020

wherep(w) is given by Eq.(B.11) and Eq.(B.19) in the classical and quantum cases

respectively. Comparing these values @) with the expression above, the spectral
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functions can be determined as

2 3
W, _ hw 5 _hw
pa(w) = ﬁth(w) = aeE hyo(w) = 2 (B.27)

in the classical case. This is the same value as given in the SED literatures. In the QED

formulation, however, the magnitude of the spectral function is found to be

202 2 hw® 2 hw
PQe(w) = RHzp(w) = 833 =  Hjpw) = 422’ (B.28)

confirming that the scale of the spectral function in the QED formulatifierdi from

that of the classical case by a factor g1
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C Detailed Calculations of Vacuum Expectation Val-
ues: Momentum Flux Approach

C.1 Overview

In this section, detailed calculations for each component of the vacuum expectation
values will be shown. The ZPF in the instantaneous comoving frame was found in the

Chapter 4 to be

E?P(0,7) = i f dsk{f@ ; ycosh(a—g) [ey - tanh(a—g) (k x e)z]
=1
+ 2008 ) [ez +tanh(Z) (kx e)y]} Hap(w)

x {a (k, 1) exp[i©] + o (k, 1) exp [-i©]} (C.1)
B?P(0, 7) = ;2; f d3k{>“<(R X )y + ycosh(%) [(R X &)y + tanh(a—g) ez]

+ 2cosh(a—CT) [(Rx &), - tanh(a—g)éy]} Hap(w)

x {a(k, 1) expi©] + o (k, 1) exp [-i©]} (C.2)
where
- kxg cosh(%)—wg sinh(a—g) (C.3)
and
o =% cosh{ ) - S sinn(X). ()

Now we are going to evaluate the vacuum expectation values of the ZPF Poynting
vector,<0|Ei le 0>, whereE; is thei-component X, y, or 2) of the zero-point electric

field. The calculations for each of the nine terms are shown below.
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C.2 Evaluation of Each Component
C.2.1 (0|ExB4/0)

In order to evaluate the compon&fiE,By| 0y, the product of the-components of the

ZPF operators (C.1) and (C.2) is formed first and we obtain

2 2
OIEBI0y = > > f RE f d*k &k x &)xHZ|(w)
=1

=1

0 [fer (k, 2) expfi®] + o (k, 1) exp[-i®]}

—_—

x {a (K, 2) expl@'] +a' (K, V) expl-i©]) o>, (C.5)
where
0=k cost( %) - o sinn( %) cs8)
and
o =1, cosh{ X - S sinn(X). )

The expression above has four terms. However, only the term proportional to

(O (k. 1), a" (K, 1)

O> remains as in (C.10), and the above expression is simplified

to

2 2
OIEBI0 =) > [ ¥k [ dek x&)HEfe)

A=1r=1

x (0l (k, 2), " (K, )| O) exp [O(K)] exp[-i®' (k)] , (C.8)

with the use of the expectation values

(O (k, 1), e (k’, 2| 0) = (0]a" (k. 1), (K',.1)| 0) = O (C.9)
(Ol (k. 1)@ (K, 2] 0) = 6,.48% (k = K) (C.10)
(0la" (k, 1), e (K", 1) 0) = 0. (C.11)
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Since the term in the second line in (C.8)jis, 6% (k — k") expi®(k)] exp [-i®’ (K")],
Eq.(C.8) becomes

2 2
OEBI0 = Y [ ok [ ek x&)Hw)
A=1 =1

x8,.6° (k — k) expli®(k)] exp[-i®’ (k)] (C.12)
which, after one integration over thesphere, reduces to

2
(0|E4B,| 0) = Z f d®kée(k x &)xHZ(w). (C.13)
=1

With a use of the polarization formula, we find that
2 ~ ~
Dledkx = > euk=0, (C.14)
=1 k=xy,z
and after substituting this result into the equation above, it is conclude¢iiaBy| 0y =
0.
C.2.2 (0|E«B,|0)

<O |EXBy| O> can also be evaluated in the similar mannef(§E,By| 0). That is, the
product of thex—component of the electric field and tiiecomponent of the magnetic
field is formed, which involves two sums and two integrals as in (C.5). Then, the

expectation value is taken as before, leaving

2
- a A ar .
(0|EB|0) = > f d3kH22p(w)excosh€T (k><e)y+tanhgez (C.15)
A=1
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In order to evaluate this equation, we use the following polarization formulae again:

2
Dadkx ey =k, (C.16)
=1
2 A A
> ad = ki, (C.17)
=1
and obtain
2 ar - ar-~ -
(0[EB|0) = > f PkHZ(w) [coshzkz— sinhzkxkz]. (C.18)
=1

The above expression can be evaluated by integrating ové#gphere using the re-

fd3k=szdkfdQ:szdkfsinedequs. (C.19)

On applying this relation, the first term including thegterm gives

fd%z: szdkfsinecosedafd¢=o, (C.20)

since the angular integratiof]sino cosAdo is zero. Similarly, the second term involv-

lation,

ing theRXRZ reduces to

f dkiuk, = f kK2dk f sir? 6 cosgde f cosgds = 0, (C.21)

due to the vanishing azimuthal integratiﬁnos¢d¢, and itis concluded th40|ExBy| 0>

is also zero.
C.2.3 (0|E«B,|0)

We continue the same analysis on other components,0f&gB,| 0), we obtain
2 ar - ar
(O|ExB,|0) = ; f dPkHZ (w)éx [cosh?(kx &), — sinhzéy . (C.22)
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Again, we make use of the polarization equations,

2
D adkx 8, = -k, (C.23)
A=1
2 A A
D ad = —kik, (C.24)
A=1
and obtain
2 ar - ar- ~
(0|ExB,0) = ; f dPkHZ (w) [sinhzky - cosh?kxky ) (C.25)

After thek—sphere integration, the two terms in the above equation reduce to

fd3kRy=szdkfsinzedefsingbdqbzo, (C.26)

and

f dPkkky = f k2dk f sir® 6do f sing cosgds = 0, (C.27)

both due to the vanishing azimuthal integrations, and it is concludedt&atB,| 0) is
also zero. This is actually a well expected result. Since it is assumed that the object is
accelerating along the-axis, there should exist a symmetry about this direction, and

the value of0|E,B,| 0) should be the same as that(@ﬂ ExBy| 0>.
c.24 (0|E,B,0)
(0]E,By 0) = f PKHZ () cosh—ey S|nh%r(ﬁx%)z] (kxe, (C.28)
A=1

We make use of the following polarization equations,

2
Z (kx &)y = —ks, (C.29)

=1

2
Dk x &)k x &) = —kik, (C.30)
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Since, as we have seen before, both terms disappear after the integrations,

f d3kk, = 0, (C.31)
and
f dkkyk, = 0, (C.32)
it is concluded that
(0|g,B,J0) =0. (C.33)

C.25 (0|E,B,|0)

2
(0|E,B,| 0) = Z f d*kH2(w)
=1

X [cosha—géy - sinha—g(& X e)z] [cosha—g(ﬁ X &)y + sinha—géz . (C38)

This equation has four terms, and each of them are to be obtained with the use of the

following polarization equations:

2
Z &(kx &)y, =0
=1
2 ~ ~ A A
Z(k X &)k x &)y = —k/k,
=1
> &8 = -kk

=1
2

Z(R x &), = 0.

=1

With these results, it is shown that,
2 ar ar
0|E,B,|0) = dPkH2 [ h& sinh 22| (k k, — ki) = 0. C.35
(01E810) = 3 [ e cosnT simn | ke (.35
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c.26 (0|E,B,0)

2
(o |E,B| o> = Z f d*kHZ (w)
A=1
x [cosh%éy - sinha—g(R x é)z] [cosha—g(lz X &), — sinh%Téy . (C.36)

This equation also has four terms. We evaluate these using the following polarization

equations,

Zzl J(kx 8), = ky

A=1

2
Dk e kxe)y,=R+kK=1-K
=1

Z“j:l—&ﬁ.

=1

Combining the above results, it is shown that,

(0|E,B,0) f dPkHZ (w)
{[cosr? & s X ] ke — cosh— smh— [(1-R)+ (- ky)]}
fd3kH2 (a)) cosﬁ—+sm|’? ]kX cosh— smh—[z k2 - kz]}

(C.37)

Using the relation,

1=IE+iC+1k2, (C.38)

the above expectation value can be simplified as,

(0|EyB,|0) = fd3kH§p(w) {[cosﬁ a—CT +sini? a—g] ky — cosh%T sinha—g |1+ ﬁi]} .
(C.39)
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The first term of this equation is zero sinjfeﬁkﬁx = 0, and we obtain,

(0]gyB.|0) = f *KHZ(w) cosha—g sinh%T [1+). (C.40)
After substituting
hw
2 —
HZp((u) = R, (C41)
dk = dw/c, (C.42)
and,
sinhg coshy = % sinh(2), (C.43)
we obtain,
Zar 0o
(0|EyB,|0) = ——smh fdw4 s fdgz (1+i2) (C.44)

The angle integrations in the above equation gives

fdQ:fsin9d9d¢:4n
f@dﬂz fsin39d0fcos¢d¢= %ﬂ

after minimal algebra, and the expectation value is found to be

3
(0]EyB;|0) = —4—; sinhz—zT %dw. (C.45)

C.2.7 (O|E;B4 0y

Due to symmetry about the direction of acceleration, i.e. xthaxis, the value of
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(0]|E;By| 0) should be the same as that<0f| EyBX| O>. Therefore, it is concluded that
(0|E;B4 0) = 0. (C.46)

c.2.8 (0|E.B)|0)

The value of{0|E,By| 0) should be proportional to that ¢0|E,B,| 0), due to the

symmetry around thg—axis. This is found from the equation

(0|E:B)0) = > f d*kHZ(w)

x [cosha—géz + sinha—CT(R x e)y] [cosha—g(R X &)y + sinha—CTéZ (C.47)
with the polarization equations,

Sk x &)y = —ky

MN

Ye=1-i

2
=1

Combining the above results, it is shown that,

(0|E.By|0) = f d*kHZ (w)

X {— [cosﬁ a—CT + sink? a—CT] ky + cosha—g sinha—g [a-i)+@- Rﬁ)]}. (C.48)

Since the angle integration for the first term is zero as we have seen in the case of

<0 |E/B| 0), we have
(0]E:B|0) = f PhHZ,(w) cosha—CT sinha—g [1+12]. (C.49)
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It is found that this is the same expression as the Eq(C.4C<D¢EyBZ| O>, except

the absence of the negative sign. Therefore, we conclude that

3
(0|E;B,|0) = A'—:;Tsinhz—iT %dw, (C.50)

which is also the same value (5@;| Esz| 0> (Eq.C.45), except the opposite sign.
C.2.9 (0|E;B, 0y

Due to the cylindrical symmetry around tReaxis, the value of0 |E,B,| O) should

vanish as in the case ¢B|E,B,| 0). Hence

(0]EzB,0) = 0. (C.51)
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D Detailed Calculations of Vacuum Expectation Val-
ues: Momentum Content Approach

D.1 Overview

Detailed calculations for each component of the vacuum expectation values will be
shown in this section. The ZPF in the laboratory inertial frdmexpressed in terms
of the object’s instantaneous comoving frame ZPF components was obtained in the

Chapter4 as shown below.

2
E0.1) = Y [ kfiec s 9. [5 + pulkx 2
=1

+ 2y & — Belk x &)y || Hzp(w)

x {a (k. 1) exp[i©] + o (k, 1) exp [-i©]} (D.1)
2
8°0.1) = Y, [ k{itkx )+ 9. [(kx ), - 5.2
=1

+ 2y, [(R X €); +,Brgy]} Hzp(w)

x {a (k. 1) exp[i©] + o (k, 1) exp [-i0]} (D.2)
where
0= kxg cosh(a—CT)—wg1 sinh(a—g) (D.3)
and
0 =< cosh{ X - sinn(X). 0.4

In order to evaluate the expectation VaIlQG#Ei*BJ‘* O>, thei-th component of the
Zero-Point electric field (D.1) and thieth component of the magnetic field (D.2) are
multiplied together. The detailed calculations for each of the nine terms are shown

below.
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D.2 Evaluation of Each Component

D.2.1 (O|Ex.Bx.|0)

The vacuum expectation valgé |Ey.By.| 0) may be evaluated by forming the product
of the x-components of the ZPF operators (D.1) and (D.2) and by performing several
integrations. The integrations has to be done as mentioned before in the object’s in-

stantaneous rest franhg The product of the two field components are given by

2 2
OEBuI0 =Y Y [ & [ PaK x &)Haglo)Hager

A=1r=1

<0'{a/ (k. ) expl©] + o' (k. ) exp[-i})

x {a (K',2) expl@'] + o' (K, V) expl-i©']) o>, (D.5)

where
0= kxg cosh((rj‘—CT)—w(g:1 sinh(a—CT) (D.6)

and
0 =< cosh{ X - E sinn(X). o)
With the help of the expectation value relationships

(O (k, 1), e (K, 2| 0) = (0l (k, 1) @' (K', 1)| 0) = O (D.8)
(Ol (k, 1), @ (K, 2] 0) = 6,.46% (k — K) (D.9)
(0la" (k, 1), (k’, 1)|0) =0, (D.10)

we can immediately understand that among the four terms above, only the one propor-
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tional to(0er (k, 1), a" (K’, )

0> remains and the above expression simplifies to

2
(0|E4.By.| 0) = Z f dk f d*k & (k' x &)xHZ ()
A=1 2

x (0l (k, ), " (k', )| 0) exp [O(K)] exp[-i©' (k')] (D.11)
2 2
= d*k | d¥K &k x &)xHZ(w)
x8,.06% (k — k) exp©(k)] exp[-i®’ (k)] , (D.12)

which, after one integration over tlesphere, reduces to

2
(OIEx.Bal0) = f d*kéx(k x &)xHZ(w). (D.13)

Using one of the polarization formula,

2
Yadkxe= > euk=0, (D.14)

=1 k=x.y,z

and after substituting this result into the equation above, it is concluded that

(O|ExB«| 0) = 0. (D.15)

D22 (0|E.

By.|0)

The product of the zero-point electric and magnetic field components are given by

(ole.5,

f d3kH2p(w) &y [(kXe) - ﬁ,ez]}, (D.16)
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which can be simplified with the use of the following polarization formulae:

2
Dadkx ey =k, (D.17)
A=1
2 A A
D ad = ki, (D.18)
=1

and the Eq.(D.16) reduces to

2
(0|ExBy.|0) = Z f APkHZ(w) [yeke + yeBrkoke] (D.19)
A=1

Each term of the equation above will be evaluated by integrating ovérthehere,

fd3kRz:szdkffsinecosededqs:erszdkfsinecosedezo, (D.20)

f dkkk, = f k2dk f sir? 6 cost do f cose d¢ = 0, (D.21)

since the azimuthal integratioﬁcos¢d¢ yields zero. Therefore, we obtain

(0|Ex.By.|0) =0. (D.22)

D.2.3 (0|Ex.B|0)

The equation to be evaluated would be

2
(OExBl0) = ) f PkHZ () {éxyT [(Rx &), + ﬁTéy]}. (D.23)
A=1
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The polarization equations used for this are

2
De(kxe), =k (D.24)
A=1
2 A A
D e = —kik, (D.25)
A=1

and the Eq.(D.23) simplifies to

2
(0|Ex.B,|0) = Z f APkHZ(w) |-k, + Brkodky | (D.26)
A=1

Again we perform thé&-sphere integration and obtain

fd3kRy: szdkfsinzedefsinqb d¢ =0, (D.27)

and

f dPkkyk, = f k2dk f sin® 6 do f sing cosg d¢ = 0. (D.28)

Both integrations are zero due to the vanishing azimuthal integrations, and we obtain
again

(0|Eyx.B,.|0) = 0. (D.29)

Since the object is moving in the positixedirection, there exists a symmetry about

x-axis. Therefore, it is reasonable that we have obtained the same values for both

(O[Ex.By.

0) and(0|Ey,B,.| 0).

0)

After multiplying they-component of the ZPF electric field by tkecomponent of the

D.2.4 (0|Ey.Bs

magnetic field, we obtain

(O|Ey.Bx.

0) = 22: f *KH2(w) {yT [ay + B (R x a)z] (kx e)x} . (D.30)
=1
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The use of the following polarization equations,

2
D gk x &) =k, (D.31)
A=1
2
D kx @)k x &) = ~kdk, (D.32)

yields the samd&-sphere integration (D.20) and (D.21) already evaluated previously.
Hence, we conclude

(O]Ey.Bx.

0)=0. (D.33)

D.25 (0[E,.B,.

0)

(0|Ey.B,.

2
0) = ; f d*kHZ(w)

x [y,:cy + B, (kx e)z] [y, (kxe) - ﬁ,az] (D.34)

Among the four terms in the equation above, two terms immediately reduce to zero

upon application of the polarization formula:

2
Z“y(&xg)yzo
=1

2
D (kxe) & =0,

and the Eq.(D.34) simplifies to

2
(0]Ey.By.|0) = ; f PKHZ(w) X 728 [—eygz + (kx ) (kx a)y] . (D.35)

Applying the polarization equations again, it is found that the non-vanishing two terms
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have values

which exactly cancels each other. to conclude that

(0|Ey.By.|0) = 0. (D.36)

D.2.6 (0|E,B.

0)

(O[Ey.B..

2
0) = ; f d*kHZ(w)

XYz [Zry + B: (R X é)z] Ve [(R X E)Z +,8T€y] . (D.37)

This equation also has four terms, but two of them yield the dasphere integrations

we have already evaluated:

which gives zero after thieintegration,

f dkk, = f k2dk f sirt 6 do f cosg d¢ = 0. (D.38)
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The remaining two terms have values

2
3 (kxd) (kxd), =1
A=
2
2,5 =1-F
A=1

Then the Eq.(D.37) simplifies to

(0[Ey.B..

2
O> = Z fdakHzp(w)’Y'rﬂT [EYEV + (k X E) (k x g)z:|
A=1
f PRH(w)y2B: (2~ K - )

- f dPkHZ(w)y2B- (1 + ) (D.39)

where the relation k& k2 + k2 + k? was used in the last step. Thkentegrations are

given below as

fd3k=fk2dkfd§2=47rfk2dk
fd3k|2§=szdkfk}dsz:szdkfsinﬁ‘edefcos(pdqsz %nszdk

after minimal algebra, to further simplify the Eq.(D.39) to

(O[Ey-B.|0

- [ ons. (D.40)

Upon changing the variable of integration frdnto w and substituting the value of the

spectral function, we can finally obtain

(O|Ey.B2.

8t . 2ar fiw®
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where the relation
1 ., 2a
YBr = cosﬁ — tanh— = smh— cosh— =5 smh% (D.42)

was used.
D.2.7 (0|E;By.|0)

(0|EzBy.|0) = Z f d3kH2p(a))yT — B (kx e)y] (kxe), (D.43)

with the polarization equations,

=1
2
; (kx ) (kx ), =~k
reduces to
(OIE:B10) = [ eakEwly. [k + Bk (D.44)

These angular integrations have already been found in Eq.(D.27) and Eq.(D.28) to be

zero. Therefore, we conclude that
(0|EzBy.| 0y = 0. (D.45)

This result is also expected due to symmetry abouixtexis, the direction of the
objects accelerated motion. Hence the valu@¢E,. By.| 0y should be the same as that

of (0|Ey.Bx

0>, which is zero.

By.| 0)

Once again due to the symmetry around xh@xis, the value 0(0 |EZ*By

D.2.8 (0|E,.

o) should
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be at least proportional to that éﬂ) |Ey* B..

0> is expressed as

0). (0|E..B,.

2
(0|E.By.|0) = Z f d*kHZ(w)
=1

X7+ [ez ~ B (kx @)y] v, [(R xé) - ﬁfez] , (D.46)

which can be simplified with the polarization equations,

The first equation above reduces to zero after the angular integration Eq.(D.38).

Substituting the other two results, Eq.(D.46) simplifies to

0)= [ dkHio) (-125:)[(1- ) + (1- )

- f I*kHZ(w) (—¥2B:) [1+ KE] . (D.47)

(O[E~.B,.

where we have used the relation=1k2 + k2 + k2 in the last step. As expected, we

obtain the same expression as the Eq(D.SQDiIrEy* B..

0), except the absence of the

negative sign. Therefore, we conclude that

0) = -(0|Ey.B..

0)

8t . 2ar fiw®
= §S|nh7fmdw (D48)

(0|E2B,.

As mentioned in the main text, on{Q |Ey* B,.

0) and(0|E..B,.

O> remain non-vanishing

and the other seven terms reduce to zero.
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D.2.9 (0|ExB.|0)

The value ok0|E. B,.| 0) should vanish as in the case(tﬁ)f| Ey. By.

0), for there exists

a cylindrical symmetry around the motion of the object, ixe-axis.
2
(OIE; B, |0) = f d’kHZ(w)
=1
XYz [ez ~ B, (kx g)y] v, [(& X&) + ﬁ,ey] (D.49)

Two of the four terms in the equation above can be found immediately as zero after the

polarization formula,

and

These two terms, however, cancel each other and as expected, we have

z

2
(OEBI0) = ) f PKH2 (w)y 2B, [- (kx2) (kx2),+ ezey]
A=1
_ f ARHZ(w)y26: Rk, — k|
=0 (D.50)
This result also confirms the fact thHat B = 0.
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E Derivation of the Momentum Four-Vector of the Elec-
tromagnetic Field

In this section, the expressions for the four-momentum (5.15)—(5.17), that is

Pi = (%w P) (E.1)
with
W=’nyd0'—%fS'ﬁd0' (E.2)
and
P:lzf&jmﬁ T - Ado- (E.3)
c c

are going to be derived. For this purpose, we start from the quantity
1
Pt = S f@’”do-v, (E.4)

the integration of the electromagnetic energy tensor over a spacelike sarfzicen
by the equation
n“x, +cr =0, (E.5)

wherert is the unit normal vector of the plane, which is necessarily timelike,
nr = -1, (E6)
Also by taking the derivative of (E.5), we obtain
dx!

n, = -cd,v and nt = port (E.7)
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As explained earlier, any instant of an inertial observer is characterized by this space-

like planec- and the unit normat”, and the surface element is given by
do* = n‘do, (E.8)
with the invariant area element
do = —n,do* = dxdydz (E.9)

For the evaluation of the zero-component of the momentum four-vector, we start

from the definition (E.1) and obtain

PO — %f@)‘”da-v = % [f@oonodcr+f®°knkd0], (E.10)

where (E.8) was used. In the case of our interest where the object is moving in the
positive x-direction with velocityv, the normal surface is given by = (y; y8f), and

the above equation becomes

PO = % [ f (-U)(~y)do + f (—%T)(E X B)kyﬂﬁkda] (E.11)
after substituting the energy-momentum tensor elements

0% = i (E?+B?) =-U, (E.12)

and

oY = _% (E x B);, (E.13)

whereU is the electromagnetic energy density. With the identification of the Poynting

vector
C

SE47r

(ExB), (E.14)

82



the quantity inside the square bracket becomes

w:fyUda—f(%g)s-ﬁda, (E.15)

which yields our expected results,

T
o
1l

W (E.16)

Ol

with
Wznyda'—%fS'ﬁda'. (E.17)

The space part of the momentum four-vector can be derived in a similar manner.

We start again from the definition (E.1) and obtain

pi_1 0"do, = 1 0%ngdo + | @'n;de, (E.18)
Cc C

where we have used (E.8). Substituting the space-time mixed elements (E.13) and the

space elements of the tensor

1 1
@ =Tij = 7 [EiEj +BiBj - E(E2 + Bz)éi,], (E.19)

T

Eq.(E.18) becomes

T
I

_ %[_f%(ExB)i (—y)do-+fTijyﬁﬁjd0'}

:%[%fsida+yﬁf'ﬂ'ﬁd0‘}

Y (sdo+2 (1 ado (E.20)
c? c

In the expression abové; is a row vector and = x,y, z. Therefore, in vector notation,
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we obtain the desired results

p:lzfsmnﬁ T - Ado. (E.21)
C C
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F Derivation of Davies-Unruh Effect

F.1 Overview

Davies-Unruh &ect was discovered independently by Davies (1975)[20] and Unruh
(1976)[21] in their &orts to better understand the so-called black-hole evaporation in
the context of QED. Its remarkable result is summarized as follows: A system under-
going a uniform acceleraticambehaves as if it were immersed in a thermal radiation of

temperaturd that is proportional to the magnitude of the acceleration, namely,

_ ha
- 27TkBC.

(F.1)

It is hard to understand why an accelerating object sees a thermal radiation of tem-
perature proportional to acceleration, based on the idea of “empty” vacuum. However,
once itis realized that the vacuum is filled with ZPF, this Davies-Unftétecould be
understood as a result of the interaction between the accelerating object and the ZPF.

Davies-Unruh &ect has been derived in severaffeient ways by Boyer[40, 18,

41], all in the context of SED. In this chapter, Boyer’s first method[40] is followed
using the two-point correlation function (expectation value), but instead of SED, it is
performed in the quantum formulatiof. First, the correlation function for an object
accelerated in ZPF is evaluated, and this value is compared with the value of another
correlation function obtained for random thermal radiation of temperdtuBy com-
parison of two expectation values, we can obtain the relationship between the acceler-
ationa of the object and the temperatureof the thermal radiation.

As a basis of this analysis, we adopt a hyperbolic motion[29, 30], in which an object
is under constant acceleratidnThe accelerating object is moving in the positixe

direction, and in its own rest franf®, the object is at rest at a poird®(a, 0, 0), which

8A similar derivation in the case of a scalar field is also found in Milonni[42], Sec. 2.10.
9For more detailed descriptions of the hyperbolic motion, refer to Sec. 4.2.
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coincides with the laboratory inertial frame att = t = 0. The space and time
coordinates of the object in the laboratory framés related to the proper timein the

following way:

Y = U,
2. =0, (F.2)
and also,
R AU
and
Yo = 11_53 - secf(lar/c) - COS}(%T)' 4

F.2 Massless Scalar Field
F.2.1 ZPFin a Massless Scalar Field

For a massless scalar field, the ZPF can be expressed as an expansion of plane waves

with random phases:

B(r.t) = f &k fy(w) [a(k) expEiot + ik - 1) + o' (k) explwt — ik - )|, (F.5)

86



where fy(w) is the spectral function introduced to set the scale of ZPF, and has the

value,10

hc?

An2w°

f2(w) = (F.6)

Also, a(k) anda (k) are annihilation and creation operators, which follow the com-

mutation rules

[a(ky). a(kz)] = [ (ky), a(kz)] =0 (F.7)

k1), @' (ka)| = 8°(k1 — kz) (F.8)

and have the expectation values,

(Ola(ky) a(k2)|0) = (0o’ (kq) o (k2)| O) = O, (F.9)
(0a(ky) @' (k)| O) = 6% (ky — k2), (F.10)
(0]’ (ky) a(k2)| 0) = 0. (F.11)

The overline ong in Eq.(F.5) indicates that this field is expressed in operators.
Notice the absence of the polarization vectors in the case of scalar field, as compared

to the ordinary vector field such as Eq.(2.12) and Eq.(2.13).
F.2.2 Expectation Value for an Accelerating Object in Random Zero-Point Ra-
diation

Now we like to evaluate the expectation values in the field fluctuations at ampiwint

space, which characterizes the random radiation field. For this purpose, we construct

10 the reference[40], Boyer uség(w) = /ic2/2n%w for the classical case, and in the quantum case, extra
factor of 1/2 is inserted to the expression for the field, Eq.(F.5) with the styfa®. However, it seems that
an extra factor of 1v2 would be more appropriate to attain the correspondence between the classical and
the quantum cases. In the present research, this extra facton@fis inserted in the functiofy(w), so that
the expression of the field remains unchanged in the quantum case except the use of quantum operators and
the exponential functions instead of cosine functions. For more details onftiei®dice in the scaling factor
between the classical and the quantum cases, refer to Appendix B.
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the product of fields at the pointand at two diferent timesr — /2 ando + 7/2, i.e.,
01¢(0,0 - 7/2) 9(0, o + 7/2)| 0).

Since the ZPF spectrum is Lorentz-invariant, the figld o- = 7/2) at the location
of the object in the inertial framk in which the object is instantaneously at rest may
be equivalent to the field in the laboratory framewhose space and time coordinates
are related to those il frame by the Lorentz transformations (F.2), (F.3), and (F.4),
that is,

20.0+1/2)=5 E cosr(w) 0,0, gsinh(w)] . (F12)

whereg is the field in the laboratory framie, but the coordinates are given in terms of
the object’s proper time.

It is to be noted that, since the field is expressed by field operators, in evaluating
the expectation value, the order of the operators dffestahe result, which is not an
issue in the case of classical random radiation. Thus, to evaluate the expectation value,

we construct a symmetrized product of operators such that

1
(0] 9(r1,ta) @(ra t2)| 0)F = > CO@(rs, 1) 812, 12)0), (F.13)

where the double dagger on the left hand side of the equation indicates that the product
is yet to be symmetrized, arf@(r1,t1) ¢(r,,t2)} inside the bracket on the right hand

side is an anti-commutator, defined as
{@(re,t1) o(ra, t2)} = o(r1, ta) o(ra, t2) + @(ra, t2) ¥(r, ta), (F.14)
yielding,

1
(01 9(r1,t1) 8(r2, )| 0)F = 5 (OR(r, 1) %(r2, )1 0) + (OI(r, &) (11, )| 0)),
(F.15)
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for the expectation value to be evaluated. Upon substituting the expression for the ZPF

from (F.5), we obtain for the first term of the equation above,

0] g(ri,t1) @(ra, 2)|0) = fdsklfdsszq(wl)fq(WZ)

% <O Ha(kl)eigl + Of(kl)e_i@l][a(kz)eie)z + OZT(kz)e‘i@Z]

o>,

(F.16)
where
0 = kj_ -r1 — waty, (Fl?)
0, = k2 -T2 — wots. (F18)

This equation has four terms, but with the use of the relationship (F.9)- (F.11), three

terms are found to vanish and the expression simplifies to

Ol @(r1,t1) @(ra, t2)| 0)

= f dk, f Bk fy(wr) fg(w2)€1e702 (o|a(k1)a"'(k2)|o> (F.19)

The expectation value yields a delta functiorkinas shown in (F.10), which after

one integration ovek reduces the expression above to

fdg’quz(w) expli(k-ri—wt))]exp[-i(k-ra—wt)]

:fds’quz(w)exp{i [k-(r1-r2)-—w(ti-t)]}. (F.20)

Itis easy to show that, after following the same steps, the second term yields similar
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result as (F.20):

f Pk fZ(w) expfi (k- 12 — wtz)]exp[-i (k - 11 — wiy)]

- [ K@ expl-ilk- (-1 -, (F21)

with the only diference of (F.21) from (F.20) in the sign of the argument of the expo-
nential function. Therefore, after adding the two results above, the exponential func-

tions are replaced by a cosine, and the expectation value (F.15) becomes

.1
(O] @(ri,t1) @(ra, t2)| 0)" = > {(Olg(r1,t1) @(r2, t2)1 0y + (Ofep(ro, to) @(r1, t1)| 0)}

:fd3quz(w)COSﬂ<-(fl—rz)—w(tl—tz)]

=fd3k Ac* cosk-(ri—ra) —w(ty —t)], (F.22)

An2ew

where the value ofy(w) in (F.6) was inserted in the second equality. After substituting

the value ofr andt from (F.12), specifically

2 _ _
r{= %cos!‘(M), t; = gsinh(w) (F.23)

2 —
ro = CEcosl‘(w), th = a%sinh(M), (F.24)

the above expression changes to

(019(0,0 - 7/2) (0, 0 + 7/2) 0y*

— fd3k hCZ COS{k f [Cosf(w) — Cos)—(w)]
- 4720 *a c c
—oS [Sinh(w) _ Smh(M)}}_ (F.25)
a c c

This expression includes the proper timén the argument of the cosine function.

However, since there is no preferred time in the hyperbolic motion, this dependence on
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o should vanish eventually, as will be shown below.

(F.25) can be more easily evaluated with the use of standard Lorentz transformation,

w’ = wcosh@o/c) — ckg sinh@o/c), (F.26)
ki, = ks coshéo/c) — wesinhfao/c), (F.27)
K =ky, K =k, (F.28)

and the Jacobian of the transformation
d*k = BP*Ky(1 + VK /o). (F.29)

With these transformations, we find that

Bk PRy +vK/w) bk

w y(w +Vk) T oW (F.30)

and the expansion,
cosh§) = 1+ x%/21 + .- ~ 1+ X?/2, (F.31)
sinh(X) = x+ /3! +--- = X, (F.32)

together with (F.30) simplifies (F.25) as

(0190, — 7/2) (0, o + 7/2) 0y

317
= h—i% cos[Za/E sinh(ar/2c)|. (F.33)
4w’ a

Note that this expression has arxalependence as expected, for there is no preferred
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time in hyperbolic motion. We integrate this equation over the angles using

f d*k = f K2dk f dQ = 4r f K2dk (F.34)

and change the variable frokto w = kcto obtain

(019(0,0 - 7/2) (0, o + 7/2) 0y

= I dw'w’ COS[Za)'E sinh(ar/2c)|. (F.35)
nc a

This function is of the form

f dx x cosbx = Re Iir’%f dx x exp[({b — )X
0 >V Jo

A—

=-b7? (F.36)
and we can find the expectation value (F.33) to be
_ _ . hat ar
0170, 0 - 7/2) 3(0, & + 7/2)| 0y = & csci? (—C) (F.37)
T

F.2.3 Expectation Value for an Accelerating Object in Random Thermal Radia-

tion

We now explore the expectation value for a point deteatoestin a thermal radiation
field and compare this value with (F.37). It will be found that the two expectation
values agree it = ha/2nkgc.

The object is at rest in its own inertial frame, and this time the surrounding field is
a random thermal radiation of temperatdiren top of the zero-point field. Therefore,

the object will see both the ZPF and the thermal radiation so that

(F.38)

hc? (1 1 ) hc? th(hw).

f2 = oy = |== AW
@) = 20\2* expokn = 1) = 20 M 2T
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The evaluation of the expectation value follows similar steps as the ones in the pre-
vious section: the product of the fields at twéfeient times+t/2, <O | #1(0,5—1/2) (0, S+ t/2)| O>i
is constructed, and the expression for the scalar field (F.5) inserted. With the use of the
symmetrized operators (F.13), each of the two terms are shown to have similar forms
except the sign in the exponential functions, which transforms to a cosine function after
the addition. The argument of the hyperbolic sine function in (F.33) is further expanded

to obtain a simpler expression,
COS[ZwC sinh(at/ZC)] ~ COS[Zu)C (at )] ~ cost) (F.39)
a B a\2c/l ' '
Thus, for the expectation value of the object at rest in a thermal radiation, we obtain

(0] 3r(0.5-1/2) 31 (0, s+t/2)|0 f dow w coth( ZkT)COSwt (F.40)

We break up the integral into two parts using the identity,

(F.41)

coth( hw ) 2

KT~ " exphoskT) — 1

to obtain

© hiw . °° 2w coswt
hl — = ————— (F42
fo dw w cot ( 2kT) coswt fo dw w coswt + fo dw explio/kT) — 1 ( )

The first term is of the same form as (F.36), and the second term of the form[43]

2m+1 2m+1
f axX COSbX_( 1)ma‘9b2m+l( cothrb — 1b) b>0. (F.43)

Combining these two results, we obtain
. hew 1 1 (akT)? kTt
f(; dw w COth(ﬁ) coswt = —t—2 + [t—z - (?) CSCH (T):| , (F44)
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which gives us the expectation value

(0] #+(0.5-1/2) $(0, s+ 1/2)|0)

. 2T2
¢ _mKT CSCH(RI;TI). (F.45)

fic

F.2.4 Comparison of Two Expectation Values

We now compare the two expectation values (F.37) and (F.45). (F.37) is the expectation
value for an object moving with acceleratianin the ZPF, whereas (F.45) is the expec-
tation value for astationaryobject in a thermal radiation of temperatdre These two
objects under completely ftierent situation have strikingly similar results: their func-
tional forms are the same, and moreover, the two results agree with each other provided
that the temperatur€é and the acceleratiomare related to each other in the following

way
_ ha
- 271'kBC.

(F.46)

Thus, this result is understood to indicate that an observer accelerating in a vacuum
finds himself immersed in a thermal bath of radiation with temperalunelated to

the acceleratioa by the relation above.

F.3 Massless Vector Field
F.3.1 ZPF in a Massless Vector Field

We now proceed to investigate the case of an electromagnetic vector field. The ZPF
in the electromagnetic vector form with a Lorentz-invariant spectrum is given in (2.12)

and (2.13) as

2
E(r,t):z f ke (K, ) Hzp(w)
A=1

x{a (k. Dexplitk-r - wt)] +a' (k) exp[-ikk -1 - wt)]}, (FA47)
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and

2
B(r.t) = Zfd3k(ﬁx &) Hzpl(w)
A=1

x{a(, Dexplik-r—w)] +af (k,A)exp[-itk-r —wt)]}. (F.48)

The overlines ot andB imply that these fields are expressed as operators. The polar-
ization unit vectors: (k, 1) (1 = 1,2) and the wave vectdc are mutually orthogonal,
and the functiorH,p(w) is determined so that it corresponds to the electromagnetic

energy per normal mode at frequenay

hiw

et (F.49)

sz p(w) =

The fields observed by an object under hyperbolic motion in its own instantaneous
rest framel, and the fields in the laboratory franig are related to each other by a
Lorentz-transformation ([32]). This standard transformation applied to the field ex-
pressions (F.47) and (F.48) above gives us the fiEl@so + 7/2) andB(0, o + 7/2),
experienced by an object under constant acceleration, as seen in the inertial laboratory

framel, as

2
Ert)=) f Ok (Rex + Fyel&y — Be(k x &)2) + 2y:[& + ek x &)y]} Hzp(w)
1=1
x {a(k, Dexplik-r - wh)] + o’ (k, ) exp[-i(k -1 - wt)]}, (F.50)
2
Br.y=), f ok {R(k x &)+ 9yel(k x &)y + o] + 2y:[(k x 8) - B:3])
=1

X Hzp() {o (, D expli(k - 1 — wb)] + o (k, ) exp-itk -1 - wb)]}, (F51)

wheret, X, v,, andj, are related to the proper timeunder hyperbolic motion as in

(F.2), (F.3), and (F.4).
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F.3.2 Expectation Value for an Accelerating Object in Random Zero-Point Ra-

diation

The evaluation of the expectation values follows a similar pattern as the scalar field

case: we construct a symmetrized operator involving an anti-commutator as

(0] Exra,t) Exra. )] 0)' = 5 (0][Eutra. ). Btz 0)

- % [(O[Ex(rs,tr) Ex(ra, t2) + Ex(r2, to) Ex(r1, )| 0)]

- % [(0[Ex(rs. tr) Ex(ra. t2)| 0) + (O[Ex(r2: t2) Ex(r1, )| 0)].

(F.52)

and calculate each term separately using the field expressi@ins1) (F.50) and

(F.51). Thus, the first term in (F.52) becomes

_ _ 2 2
(O] Ex(ra, 1) Ex(rz,t2)|0) = > " f %k f A%, &Hzp(w1)Hzp(w2)

A1=11=1
x <o o (k2. 2) €9 + " (k. 2) €7 x [ar (k2. 1) €% + 0" (k. 1) €77 o> (F.53)
where
0 = kl ‘I — wity, (F54)
02 = kz 12— waly, (F.55)

and again only one term in the bracket remains unvanishing, while the other three terms

reduce to zero, due to the relation (2.16)-(2.18), leaving

_ _ 2 2
(O] Ex(ra, 1) Ex(r2, )| 0) = > " f % f A% &Hzp(w1)Hzpw2)

A1=1 =1

x €91e719 (0o (k, e’ (k2. 2)| ). (F.56)
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After integrating over a delta function kithat comes out of the bracket as shown in

(2.17), we obtain

2
(0 Ex(ra, t) Ex(r2, )] 0) = 3’ f ok ZHZ () expli[k - (11— 12) - w (1~ )]}
=1

2
fd3k ‘Z—exp ik (r1—12) —w(t— )]}

=1
(F.57)

Following the same procedures, we can show that the second term also yields a

similar result:

(0] Ex(ra to) Ex(ra to)| o)

—Z [ @@ expt-ilk- (-1 - o -w]). (F59)

Thus, just like the case of a scalar field, the two results above added together re-
places the exponential functions with a cosine function, yielding the expression for the

expectation value (F.52)

<0| Ex(r.tr) Ex(ra. to)| 0>i = % {<0|E(f1, tr) E(r2.to)| 0> + <0|E(f2, tp) E(r1.t)| 0>}

2
Zfd3k6x4 5 CoSk - (r1—r2) —w(ts - t)],

A=1
(F.59)
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which, upon substituting the value oaindt from (F.2), becomes

(0] Ex(0.0 — 7/2) Ex(0.0 + 7/2)| 0)’

2
=y f ok 221 cos{kxf [Cosr(a(a - T/Z)) ) cosr( a(o + T/z))]
=1 4 a c c

—wg [sinh(w) - sinh(w)}}. (F.60)

The expression is similar to (F.25) in the scalar field case, except we now have an extra
factor of a sum over polarization states. This summation can be evaluated with the use

of the polarization formula introduced earlier in Appendix A, specifically, (A.6),

2
D &g =6y - kik;. (F.61)
=1
With i = j = 1, the summation becomes-1k2/k. After introducing the same change
of variables as in the scalar case, (F.26)-(F.28), using the Lorentz transformation, we
find
k(1 - K&/K)w = 3K (1 - K2 /K)w'. (F.62)

The argument of the cosine is also simplified with the expansion (F.31) and (F.32) as

before, and the expression (F.60) becomes

(0| Ex(0.0 — 7/2) Ex(0.0 + 7/2)| )’

hiw' w'? — c?K? 2c ar
_ 31,7 X ’ e i sl
= fd k Tz o cos[(u 3 smh(ZC)]. (F.63)

The integration over th&-sphere can be divided into theintegration and the solid

fd3k=fk2dkfd£2=szdkfsineded‘p, (F.64)

angle part as
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which gives

f Pk w? - c2kE f k2dk c2k? — c2k&
42 w B 4r? ck

k2dk . ;
:f4_ﬂ2ckff(1—smzecoszt,o)smedﬁdso, (F.65)

sing do de

where the relatioky = ksinf cosy was used, and the prime was omitted for simplicity.
The integration over the angles can be easily obtainedras4k/3 = 8r/3, and the

expression (F.63) becomes

(0] Ex(0.0 — 7/2) Ex(0.0 + 7/2)| 0)’

= % fom dw w® COS[w%C sinh(g—Z) . (F.66)
This integration is of the form
fow dx X cosbx =T (3+ 1) b C*V = 6/b*, (F.67)
and we finally obtain
(0] Ex(0, 0 - 7/2) Ex(0, 0 + 7/2)|0)' = % (230)4 csc (;—;) (F.68)

We continue with the evaluation of other expectation values: the correlations be-
tweenE andE, B andB, E andB, andB andE. Each of the electric and magnetic fields
have three components, making a total ®4 ¢ 36 expectation values. However, from
the way the expectation value (F.68) was evaluated, we can see that the basic functional
form stays the same just like (F.60), no matter which fields and which components are
selected: all of them have the integration overkisphere, the summation over the po-
larization states, the spectral functiblé’p(w), and the cosine function which is a result

of the addition of two terms involving® ande™'®. Moreover, we can also observe that
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the argument of the cosine function is the same regardless of the components chosen,
and the only part in (F.60) that changes its form depending on the components is the
polarization states. Since this polarization states are scalars, the orders of these states

can be switched, which gives

0|Ei(0.0 - 7/2) E;(0.0 + 7/2)|0)’ = (0| E;(0.0 - 7/2) E(0. + 7/2)| 0)"
]

(F.69)
(0] Bi(0.0 ~ 7/2) Bj(0.0 + 7/2)|0)' = (0| Bj(0.0 — 7/2) Bi(0.cr + 7/2)| 0)’
(F.70)
0|Ei(0, o - 7/2) B;(0.0 + 7/2)|0) = (0| B;(0.0 - 7/2) Ei(0, o + 7/2)|0) . i, = 1,2, 3
]
(F.71)

With these in mind, let us see how the correlatioxahdy components in electric

field turns out. We have

(0| Ex0.0 - 7/2) Ey(0.r + 7/2)| )

2 ho . . A c? a(oc—1/2) alo +171/2)
= ; fd3kﬁequ [ey — Be(k x e)z] cos{kxg [COSF(T) = cosl‘(T)}

—wS [sinh(w) - sinh(M)}} . (F72)
a C C

This involves two summations over polarization states,

2
Z &x(k x &), = —k,, (F.73)
=1
2 A A
D ed = ki, (F.74)
A=1
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both of which vanish as shown in (C.26) and (C.27). Therefore, we conclude
(0| Ex(0.0-) Ey(0.0-,)] 0)' = 0. (F.75)
where
o_=0-1/2, o,=0+71/2 (F.76)

The evaluation 0(0 [Ex(0.0 = 7/2)EA0, 0 + 7/2)| O)iE involves

2
Z &x(kx &)y =k, Z &y = —keks, (F.77)

2
A=1 =1

which also vanish asin (C.20) and (C.21). The func{iofE,(0, o - 7/2)Ex(0, o + 7/2)| o)i

includes summations

2
D (kx &)z = k. (F.78)
1=1
2 ~ A
Z &yéx = —kk,, (F.79)
=1

which are exactly the same values as those in(OE(0, o_)E,(0, o-+)|0>i case.

Therefore, we find that

(0] Ex(0.0 — 7/2) Ey(0.0 + 7/2)|0)' = (0| Ey(0.0r — 7/2) Ex(0. " + 7/2)| 0) =,
(F.80)
in partial confirmation of (F.69). This is also physically reasonable, since there should
exist a symmetry about the direction of acceleration, x-@xis.

The evaluation 0(0|Ey(0, cr_)Ey(O, 0'+)| 0>]IE requires extended calculations. For
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this expectation value, we have

(0|Ey(0.0 - 7/2)E/(0. 0 + 7/2)| 0)'

2
_ 3w | alc-1/2)\ ~ o)si a(o—1/2)
_;fd kg eycosr(—c ) (k x )Zsmh(—c )]

&ycosl‘<a(o—+ﬁ2)) — (kx é)zsinh(w)]

X cos{kX§ [cosr{M) _ cosr( a(c ';T/Z))}

X

—wg [sinh(w) - sinh(w)}}. (F.81)

The summations involved are of the following three types,

2
Z &k x &), = ky

=1

2
Z(Rxe)z(kxe)z= 1-k=k+k2
1=1

Introducing the same change of variables (F.26)-(F.28), we find that the first summation

(F.82) can be easily shown to vanish after the angular integration,

fd3kkx:szdkkadQ:szdkfsinzecos‘dedgo:O.
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The expectation value (F.81) now becomes

(0|Ey(0.0 - 7/2)E/(0. 0 + 7/2)| 0)'

- el 35) .- ) - s () 4 el 5 son 3

(F.87)

The expression above has two terms, but the comparison of this with previous results
shows that each term has the same functional form as (F.63), except that each term
in (F.87) has a dierent component df, and an extra factor of hyperbolic functions,
which does not fiect thek-sphere integration. Therefore, the evaluation follows the

same pattern (F.63)-(F.65), and the angular integration yields
f(l - k?)singdQ = ff(l—sinzesinz ¢)sind do dp = 4r — 4r/3 = 8r/3, (F.88)
and
f (1-k?)sinadQ = f f (1-cof6)singdo dp = 4r — 4n/3 = 81/3, (F.89)

respectively, the same result for each cg%ie— Akf)dQ, i = 1,2,3. This simplifies
(F.87) to

(0|Ey(0.0 - 7/2)E/(0, 0 + 7/2)| 0)'
-2 [[wf a5 () o

which, with the use of the identity co$R — sint? x = 1, becomes exactly the same as

(F.66). Therefore, we obtain

(0| Ey(0.0~ 7/2) Ey(0.0 + 7/2)] 0 = % (2%)4 csch (2—2) . (F.91)
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The evaluation 0(O|Ey(0, o )EA0, )| O>i involves the summations

2
Z &, = —kyko, (F.92)
A=1
2
Dakxey =o. (F.93)

The angular integration of the first summation is
fRyRZsine do = ff(sinesimp)(cose) sing do dy = 0, (F.94)

proving that<0 |Ey(0,0_)EA0, )| 0>i is zero. The calculation ((D [EA0,0_)Ex(0, 0.)) O>1E
involves the same polarization summation as the Cas<® (@&(0, -)EA(0, 0-.)| 0>i,
which was shown earlier to vanish, again in partial confirmation of (F.69). The value
of (0[Ex(0.0_)E,(0.-.)|0)" should also vanish just liké0|E,(0. o )E-(0. o-,)|0)’
due to symmetry around theaxis. The functior(o [EA(0,0-)EL0. )| O>i involves

the following polarization summations:

2
> Elkx &)y = -k, (F.95)
A=1
2
Dikxeykxey=1-K (F.96)
A=1
2
Ye=1-& (F.97)
A=1

These results will produce an expression,

(0] Ex0, 0 - /2) E0.0 + 7/2)| 0

= fdsk’ii—:; [cosﬁ (2—2) (1 - R;z) — sink? (%) (1 - l?;z)] cos[a)’%c sinh(%)

(F.98)

>
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which is very similar to (F.87). The only fierence between the expression above and
(F.87) is the switched positions E{F andk2. However, as we have seen before in (F.88)
and (F.89), since the values of integrations are the same, we can conclude that the ex-
pectation valuéo [E(0,0-)E(0,0,)| 0>]t is exactly equal t«éo [Ey(0.0-)Ey(0, 0,))| O>¢.

The calculations for the expectation vaIt(@siEi (o} (r_)Ej (0, 0'+)| O>i also follow
a very similar pattern as those f@) |Ei (0, a_)Ej(O, 0'+)| O)i. By inspecting the form
of the zero-point electric and magnetic fields (F.50) and (F.51), we find that they are

interchangeable to each other with the transformation,
& okxed, ve -w (F.99)

Moreover, from the polarization formulae, we have

2 2
Zaaj = Z(%xe)i(kx &) = 1 - kik; (F.100)
=1 =1
2 ~ 2 . .
Zq(kxaj = —Z(kx &)iéj = sijckic (F.101)
A=1 A=1

which guarantees a complete correspondence bet@ﬁﬁ(o, o )Ej(0,0.)| O)i and
(0[Bi(0.0-)Bj(0.7,)] 0>i, when the term’2_, &¢& and Y2, (k x &)i(k x &); are in-
volved. When the cross terms as (F.101) are involved, the sign would be opposite, but
this case is always accompanied by a factow,ofvhich also changes the sign as in
(F.99) with the result of cancelling any sign discrepancies that may exist. Therefore,
we can conclude that

i_

(0[Bi(0.0 - 7/2)B;(0, 0 + 7/2)| 0)" = (O[Ei(0, & — 7/2)E;(0, o + 7/2)| o)i . (F.102)

The cases 0(0|Ei(0, o-)Bj(0, a+)|0>iE has been investigated closely in Appen-

dices C and D. Since the analysis goes in parallel here again, the only term which
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was non-zero in the previous Appendices will be calculated in detail here. The other
terms can be shown easily to vanish here as well. For example, the calculation of
<O [Ex(0,0-)BX(0.0,))| O>iE includes the summatiofi2_; &(k x &)y, which vanishes af-

ter the angular integration. The functi«éﬁ |EX(O, o-)By(0, 0'+)| O>i involves summa-

tions
2
Z &k x &), = —kks, (F.103)
A=1
2
Z &xéy = ks, (F.104)
=1

which also vanish after integration. The casé(dﬁx(o, 0_)BL0,0)| O>i carries sum-

mations
2 ~ ~
> elkx @), = -k, (F.105)
=1
2 A A
Dbl = ki, (F.106)
A=1

which again vanishes. The diagonal tef@r{Ey(0,o)By(0, )| Of involves the fol-

lowing summations:

2
Z &(kxe)y, =0, (F.107)
A=1
2
Z &(kx&),=0, (F.108)
1=1
2
D &8 = -k, (F.109)
=1
2
Z(R x &)y (kx &), = —k/k,. (F.110)
=1

The last two integrations have been shown to vanish in (F.94) after the integration over
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the solid angle.
For the case 0(0 |Ey(0, o_)B,(0, <7+)| O)i, after constructing the symmetrized op-

erators and adding up the contributions from both terms, we obtain

(0| Ey(0.0 - 7/2) By(0.cr + /2)| 0)’

= Z fd3k_ f(M) - (k x g)zsinh(w)]
e c c

x | (kx &), Cosr(w) _ éysinh(a(a -;(-:7/2))]

X cos{kxg [cosr(w) _ Cosr( a(o "(':T/Z))}

—wg [sinh(w) - sinh(w)]}. (F.111)

The summations involved are exactly the same ones (F.82)-(F.84) as the (ﬁ\ﬁ,@ﬁ o )Ey(0,0,)| 0>i.
After introducing the same change of variables (F.26)-(F.28), the expression (F.111)

above becomes

(0| Ey(0,0 - 7/2) B0, + 7/2)| 0)’

= [ (1K) (1R coor Zsmn(T)]

(F.112)

The first integration has been shown in (F.86) to vanish. For the second integration, we
found previously in (F.88) and (F.89) that both of them yield exactly the same value.
Therefore, we conclude th(am|Ey(0, o_)B0,0,)] 0>]IE =0.

Finally, the case 0¢0 [EA0.0-)BA0. 7)) O>i. involves the following four summa-

tions:
2 2
Z &k x &), = Z &(kxe)y, =0, (F.113)
=1 =1
2 . . 2 o
Z(k x &), (kx &), = Z &, = —kyko. (F.114)
A=1 =1
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The last integration also vanish as already shown in (F.94), which prove{ﬁﬁato, o_)B,(0, 0'+)| 0>i
also vanishes. The other terms that were not treated here can also be shown to vanish

from the symmetry considerations. For example, the valtéé (&, (0, o-)Bx(0, o,)| O>i

has the same value (which is zero)(@#ﬁx(o, o_)By(0,0,))| O>i, in partial confirma-

tion of the relation (F.71).

Summarizing the results obtained in this section, we find that

(0[Ei(0.0 - 7/2)E;(0, 0 + 7/2)| 0)*

= (0[Bi(0. - 7/2)B;(0. 0 + 7/2)| 0)'

4
- :—Z(%) cscH(Z—Z)(si,- (F.115)

and
(0[E0.0)By(0.0)|0) =0, i.j=123. (F.116)

F.3.3 Expectation Value for an Accelerating Object in Random Thermal Radia-

tion
We now study the case of a detector at rest in its own inertial frame in random thermal
radiation. The spectral function now has two terms: ZPF spectiyg{w) and the
Planck spectrum, i.e.,

2 ()= (L L _ ho o[ e
hgr(w) = 5 2+exp(hw/kT)—1 =7 coth KT )" (F.117)

The evaluations of the expectation value proceed in analogous manners as those in
the previous sections. We construct symmetrized operators, which yield two terms of
different operator orders. Components of the electric fields from (F.50) are substituted,
and the spectral function (F.117) inserted. When these two terms are added, a cosine

function is obtained. For example, the expectation valuesaimponents of electric
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fields at two dfferent timess + t/2 can be calculated as

(0] Eru(0. 5~ 1/2) Erx(0, s+ t/2) 0)'

2
B Y w f a(s—t/2)\ a(s+1/2)
- ;fd ké e coth(ZKT)cos{kX - [cosr(—c ) cos%(—c )]

—wl [sinh(a(s_—t/z)) - sinh(M)]}. (F.118)
a C Cc

The argument of the cosine function can be simplified using (F.39), and after the sum-

mation over polarization states, the above expression becomes

(0| Eru(0. 5-1/2) Erx(0, 5+ t/2)| 0)'

3 2\ hw
f &k (1- k) coth(ZkT)co&ut. (F.119)

At this point, it is clear that the polarization summation part and the following angu-
lar integrations are unchanged from the calculations in the previous section. Therefore,
the terms that vanish in the last section also vanish here as well. We only need to
evaluate the diagonal terms for whick j.

After a change of variable, the expression (F.119) becomes

(0] Erx(0.5- t/2) Ery(0. 5+ 1/2) o)'“i'

dij 2 f dw w? coth( )COSa)t (F.120)

which can be evaluated by breaking up the integral to two parts as

f dw w® coth| — | coswt = f d coswt + f dw 2—aﬁcos(ut
v k - & expliw/KT) —

= t—i + {2(%) cscﬁ(g) [3 csci"r(%-rt + 2)] - g}

(F.121)
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where the first integral is of the type (F.67), and the second (F.43). As explained ear-
lier, we obtain the same results for the other diagonal termasjj, both between two
different electric fields and two fiierent magnetic fields. Also, the expectation val-
ues between electric and magnetic fields vanish for all combinations of components.

Therefore, we obtain the following results:

(0] Eri(0.5- 1/2) Erj(0. 5+ 1/2)| 0)" = (0| Bri(0. 5 1/2) Br;(0, 5+ t/2)] 0’

4
= 6”-% (%) [cscﬁ1 (%Tt) + % cschf (%Tt)}

(F.122)

and

(0| Eri(0.5- 1/2) Brj(0. 5+ /2| 0)' = (0| Bri(0. s t/2) Er (0, s+ t/2)] 0)’

=0, i,j=123 (F123)

F.3.4 Comparison of Two Expectation Values

The vacuum expectation values have been evaluated for the case of electromagnetic
vector fields in two dferent methods: one for an object under constant acceleration
(hyperbolic motion) in ZPF, (F.115) and (F.116), and the other for an object in thermal
radiation of temperatur&, (F.122) and (F.123). We once again find similarities be-
tween these two expressions. However, the correspondence is not exact like the case of
a scalar field, and it seems that the detector under hyperbolic motion in ZPF does not
find the Planck spectrum.

This point has been further studied by Boyer[18], and it has been found that an os-
cillator under hyperbolic motion will experience a relativistic radiation reaction force

related to its acceleration, and this extra term makes the oscillator respond with a
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Planckian distribution with temperature

ha

= —. F.124
27TkBC ( )
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