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Extraordinary momentum and spin in evanescent
waves
Konstantin Y. Bliokh1,2, Aleksandr Y. Bekshaev3,4 & Franco Nori3,5,6

Momentum and spin represent fundamental dynamic properties of quantum particles and

fields. In particular, propagating optical waves (photons) carry momentum and longitudinal

spin determined by the wave vector and circular polarization, respectively. Here we show that

exactly the opposite can be the case for evanescent optical waves. A single evanescent wave

possesses a spin component, which is independent of the polarization and is orthogonal to

the wave vector. Furthermore, such a wave carries a momentum component, which is

determined by the circular polarization and is also orthogonal to the wave vector. We show

that these extraordinary properties reveal a fundamental Belinfante’s spin momentum, known

in field theory and unobservable in propagating fields. We demonstrate that the transverse

momentum and spin push and twist a probe Mie particle in an evanescent field. This allows

the observation of ‘impossible’ properties of light and of a fundamental field-theory quantity,

which was previously considered as ‘virtual’.
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I
t has been known for more than a century, since the seminal
works by J.H. Poynting1, that light carries momentum and
angular momentum (AM)2,3. These are the main dynamical

properties of electromagnetic waves, which are also preserved
in the quantum-mechanical picture of photons4. Optical
momentum and AM play a crucial role in various light-matter
interactions5–7, including laser cooling8–10, optical manipulation
of atoms or small particles8–13, and in optomechanical systems14.

The simplest example of an optical field carrying momentum
and spin AM is an elliptically polarized plane wave. Assuming
free space propagation along the z axis, the complex electric field
of such wave can be written as

E rð Þ ¼ A
�xþm�yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ mj j2

q exp ikzð Þ: ð1Þ

Here A is the wave amplitude, �x and �y are unit vectors of the
corresponding axes, the complex number m determines the
polarization state with s ¼ 2Imm

1þ mj j2 2 � 1; 1½ � being the helicity

(ellipticity of polarization), k¼o/c is the wave number, and
throughout the paper we imply monochromatic fields with
omitted exp(� iot) factor.

The momentum and spin AM in wave (1) can be characterized
by the corresponding spatial densities

p ¼ w
o

k �z; s ¼ w
o
s�z; ð2Þ

where w¼ go|A|2 is the energy density, and we use Gaussian
units with g¼ (8po)� 1. In agreement with the quantum-
mechanical picture of photons4, the momentum p is
determined by the wave vector k�z and is independent of
polarization. At the same time, the spin s is proportional to the
polarization helicity s and is also collinear with the wave vector.

The optical momentum and spin densities can be measured
experimentally by placing a small absorbing particle in the field
and observing its linear and spinning motion15–19. Naturally, the
radiation force and torque (with respect to the particle’s centre)
quantify the momentum and AM transfer to the particle and are
proportional to the densities (2) in the plane wave (1): Fpp and
Tps (refs 19–25), Fig. 1.

The above picture is simple and intuitively clear in the plane-wave
case, but complex, spatially-inhomogeneous fields require a more

careful approach. Below we show that one of the simplest examples of
an inhomogeneous field—a single evanescent wave—exhibits extra-
ordinary momentum and spin properties, which are in sharp contrast
to what is known about photons, optical momentum and spin.

Results
Momentum and spin densities from field theory. The
momentum density p(r) of a quantum or classical wave field
appears in the energy-momentum tensor within the corresponding
field theory26, where momentum density also represents the energy
flux density. For scalar fields, the momentum density can be
written as a local expectation value of the canonical momentum
operator p̂ ¼ � i=; i:e:; p ¼ Reðcyp̂cÞ, where c(r) is the wave
function, and we use units :¼ 1. However, for vector fields, an
additional spin momentum density was introduced in 1939 by F.J.
Belinfante27 to explain the spin of quantum particles and
symmetrize the canonical energy-momentum tensor in field
theory. The spin momentum is added to the canonical (or
orbital) momentum density, resulting in26–31:

p ¼ Re ~cyp̂~c
� �

þ 1
2

=�s � pOþ pS: ð3Þ

Here ~cðrÞ is the spinor wave function, whereas s(r) is the spin
AM density defined as the local expectation value of the
corresponding matrix spin operator Ŝ:

s ¼ ~cyŜ~c: ð4Þ
Equations (3) and (4) are fundamental and hold true for

various particles. For Dirac electron, Ŝ is the spin-1/2 operator and
~c r; tð Þ is the Dirac bi-spinor28–31. In the case of monochromatic
electromagnetic waves (photons), equation (3) yields the time-
averaged Poynting vector p¼ gkRe(E� �H), when Ŝ is given by
spin-1 matrices that act on the complex electric and magnetic field

amplitudes, ~c rð Þ ¼
ffiffi
g
2

q E rð Þ
H rð Þ

� �
, supplied with the free-space

Maxwell equations22,26–31 (see Supplementary Note 1). Explicitly,
the optical momentum and spin densities (3) and (4) read

pO ¼ g
2

Im E� � =ð ÞEþH� � =ð ÞH½ �; pS ¼ 1
2

=� s;

s ¼ g
2

Im E��EþH��H½ �:
ð5Þ
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Figure 1 | Momentum and spin in a circularly-polarized propagating plane wave. The complex wave electric field is given by equation (1) with m¼ i,

that is s¼ 1. (a) Instantaneous electric and magnetic fields, E(r,t)¼Re[E(r)e� iot] and H(r,t)¼Re[H(r)e� iot], form helical distributions (see also

Supplementary Note 2 and Supplementary Fig. 1). As the wave propagates along the z axis, the fields rotate in the transverse (x,y) plane. This rotation

generates the spin AM density s / s�z, which is represented in (b) by multiple loops of the (zero-net) spin-momentum pS¼=� s/2 in the

transverse plane. At the same time, the wave propagation produces the canonical (orbital) momentum density pO / k�z. (c) Orbital momentum and

spin AM are locally transferred to a probe particle, thereby exerting a radiation force FppO and torque Tps on it, equation (6).
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Note that these quantities are naturally split into electric and
magnetic field contributions: pO ¼ pO

e þ pO
m and s¼ seþ sm. It is

important to emphasize that although the Poynting vector p is
usually considered in optics as a single momentum density of light
2, it actually represents the sum of two quantities pO and pS, with
drastically different physical meanings and properties. Below we
uncover the contrasting manifestations of the canonical and spin
momenta.

The canonical (orbital) and spin parts of the momentum
density (3), p¼ pOþ pS, generate, respectively, the orbital and
spin parts of the AM density: j¼ lþ s (refs 26,27,32,33). The
orbital AM density is l¼ r� pO, and this is an extrinsic origin-
dependent quantity. At the same time, the spin AM density s,
equation (4), is intrinsic (origin-independent). Nonetheless, its
integral value is determined by the circulation of the spin
momentum: S¼

R
sdV¼

R
r� pSdV, where integration by parts

should be performed28–33.
The orbital momentum density pO is naturally proportional

to the local phase gradient (wave vector) in the field22.
In contrast, Belinfante’s spin momentum pS is a rather
enigmatic quantity26–33. On the one hand, the spin
momentum provides the physical origin of the spin AM
of quantum particles. On the other hand, it is usually
considered as an auxiliary ‘virtual’ quantity, which cannot be
observed per se. Indeed, the spin momentum represents a
solenoidal current, which does not contribute to the energy
transport (= . pS¼ 0 and

R
pSdV¼ 0), and only generates spin

AM. Consider, for instance, the elliptically polarized
electromagnetic plane wave (1). This field carries only the
longitudinal orbital momentum density: pO / k �z, while the spin
momentum vanishes: pS¼ 0. In this case, what generates the
spin AM density s / s�z? This known paradox26,34,35 is resolved
by representing the zero transverse momentum as an array of
infinitely small loops of circulating spin momentum in the (x,y)
plane26,30–32, see Fig. 1b. Currents from the neighbouring loops
cancel each other, but at the same time they provide non-zero
circulation along any finite closed loop, that is, non-zero spin
AM along the z axis. The formal integral relation between pS

and s does not work here, because a plane wave is an unbounded
state; the introduction of a boundary (for example, Gaussian
intensity distribution in the transverse plane) immediately
produces a non-zero boundary spin current pSa0 with the
integral circulation yielding the spin S (refs 28,30–32). Thus,
Belinfante’s spin momentum is similar to the boundary
magnetization current or topological quantum-Hall current in
solid-state systems (multiple current loops are produced there by
electron orbitals), whereas the spin AM is analogous to the bulk
magnetization in such systems.

Probing the momentum and spin densities with small particles.
Having the above theoretical picture, let us consider measure-
ments of the momentum and spin densities in an electromagnetic
field. As we mentioned in the Introduction, a small absorbing
particle immersed in the field can be employed as a natural meter
of these quantities. Calculating the radiation force and torque on
a dipole Rayleigh particle with equal electric and magnetic
polarizabilities, ae¼ am¼ a, one can show that they are deter-
mined by the canonical momentum and spin densities19–25 (see
Supplementary Note 3):

F ¼ g� 1 1
2o

Re að Þ=wþ Im að Þ pO

� �
; T ¼ g� 1Im að Þ s: ð6Þ

Here w ¼ g
2 o jEj

2 þ jHj2
	 


¼ we þ wm is the energy density of the
field. The first term in the first equation (6) is the gradient force,
while the second term is the radiation pressure force. Together they

‘measure’ the imaginary and real parts of the complex canonical

momentum: ~pO rð Þ ¼~cy rð Þ p̂~c rð Þ ¼ pOðrÞ� i=wðrÞ=2o, which
is proportional to the quantum weak value of the photon’s
momentum, pw ¼ hrjp̂j~ci=hrj~ci (refs 19,22,36).

Importantly, it is the canonical momentum pO rather than
the Poynting vector p that represents the physically-
meaningful momentum density of light that appears in experi-
ments (p¼ pO only in linearly polarized paraxial fields and
plane waves)19,33. In particular, the orbital and spinning
motions of probe particles in circularly-polarized vortex
beams15–18 originate exactly due to the force from the
azimuthal component of pO and the torque from the longi-
tudinal component of the spin density s. Furthermore, the
quantum-mechanical resonant momentum transfer from
light to a two-level atom is also determined by the canonical
momentum density37,38. Finally, a remarkable recent
experiment36, which realized quantum weak measurements of
the local momentum of photons, also measured pO (ref. 19).
Thus, the spin momentum pS turns out to be indeed ‘virtual’, that
is, non-observable for weak-interaction measurements.

Note that we considered an ‘ideal’ particle with equal electric
and magnetic polarizabilities. In reality, local light–matter inter-
actions usually have electric character, and |ae|44|am|. This is
because of the fundamental electric–magnetic (dual) asymmetry of
matter, which breaks the intrinsic dual symmetry of the free space
Maxwell equations33,39,40. In this case, the particle will ‘measure’
only the electric parts of the momentum and spin densities (5):
F ’ g� 1 1

2o Re aeð Þ=weþ Im aeð Þ pO
e

� �
and TCg� 1Im(ae)se (refs

25,33) (see Supplementary Note 3). The electric and magnetic
contributions to the local dynamical characteristics of light are
equivalent in paraxial propagating fields22: pO

e ’ pO
m, seCsm, but

they can differ significantly in other cases.

Extraordinary momentum and spin in a single evanescent
wave. We are now in a position to consider the main subject of
the present study: evanescent waves. A single evanescent wave
propagating along the z axis and decaying in the x40 half-space
can formally be obtained via a rotation of the propagating
plane wave (1) by an imaginary angle iW about the y axis41. In
doing so, we obtain the electric evanescent-wave field:

E ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ mj j2

q �xþm
k
kz

�y� i
k
kz

�z

� �
exp ikzz�kxð Þ: ð7Þ

Here kz ¼ k cosh W4k is the longitudinal wave number, whereas
k ¼ k sinh W is the exponential decay rate, so that the complex
wave vector is k ¼ kz�zþ ik�x. Substituting field (7), with the
corresponding magnetic wave field (see Supplementary Note 2
and Supplementary Fig. 2), into equations (3) and (5), we
calculate the canonical momentum, spin momentum and spin
AM densities in the evanescent wave:

pO ¼ w
o

kz�z ; pS ¼ w
o
� k2

kz
�zþs

kk
kz

�y

� �
; ð8Þ

s ¼ w
o

s
k
kz

�zþ k
kz

�y

� �
; ð9Þ

where w¼ go|A|2exp(� 2kx) is the spatially-inhomogeneous
energy density of the wave.

Equations (8) and (9) reveal remarkable peculiarities of the
momentum and spin in evanescent waves and represent the key
analytical point of our study. First, note that the evanescent wave
(7) possesses longitudinal canonical momentum pO

z / kz4k,
which exceeds the momentum of a plane wave with the same
local intensity. Divided by the energy density w, this momentum
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yields the superluminal local group velocity in evanescent
waves: vgz¼ ckz/k4c (refs 19,42). Although the Poynting
vector corresponds to subluminal propagation,
pz ¼ pO

z þ pS
z / k2=kzð Þok, it is the canonical momentum that

represents the observable momentum density. In particular, the
momentum transfer via the radiation force (6) Fz / pO

z to a dipole
particle in the evanescent wave (7) will be larger than k per
photon43. Such ‘super-momentum’ transfer was observed by
Huard and Imbert37 in the resonant Doppler coupling with a
moving atom. In terms of the quantum weak measurements
paradigm, the ‘super momentum’ pO

z represents a weak value of the
photon momentum with the post selection in a ‘forbidden’ zone
unreachable for propagating waves (for example, beyond a totally
reflecting interface)19.

However, what is much more intriguing in equations (8) and
(9) is the presence of the transverse y-components of the
momentum and spin in the wave (7) propagating solely within
the (x,z) plane. Moreover, here the momentum pS

y / s kk=kzð Þw
becomes proportional to the helicity s, while the spin

syp(k/kz)w turns out to be helicity independent! This is in
sharp contrast to propagating waves and photons, equation (2).

The transverse momentum and spin appear due to the two
features of the evanescent field (7). The first one is the imaginary
longitudinal component of the field polarization:� i k=kzð Þ ẑ. This
induces a rotation of the fields in the propagation (x,z) plane (see
Fig. 2a,d), and generates the spin sy / Im E�z ExþH�z Hx

	 

inde-

pendently of s. Recently, we described such spin for surface
plasmon-polaritons42, and it was shown that the imaginary
longitudinal field component plays an important role in optical
coupling processes44,45. The second feature is the inhomogeneous
intensity wpexp(� 2kx). This inhomogeneity destroys the
cancellation of the spin momentum loops in the (x,y) plane,
which results in the non-zero transverse Belinfante’s spin
momentum: pS

y ¼ � @xsz=2 6¼ 0, see Fig. 2e. Note that although
equation (8) and Fig. 2b,e show unidirectional spin momentum in
the x40 half-space, the accurate consideration of the interface x¼ 0
and medium in the xo0 half-space ensures the vanishing of the
integral spin momentum, in agreement with

R
pSdV¼ 0 (ref. 42).
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Figure 2 | Momentum and spin in linearly and circularly polarized evanescent plane waves. The complex wave electric field is given by equation (7) with

m¼ s¼0 for the linear-polarization case (a–c) and m¼ i, s¼ 1 for the circular-polarization case (d–f). (a,d) The imaginary longitudinal components of the

complex E(r) and H(r) fields (7) result in a cycloid-like projection of the instantaneous electric and magnetic field distributions, E(r,t) and H(r,t), onto the

propagation (x,z) plane (see Supplementary Note 2 and Supplementary Fig. 2). As the wave propagates, the fields rotate in this plane even at linear

polarizations. This rotation generates a transverse helicity-independent spin AM (8) syp(k/kz)w, represented in (b) by multiple loops of the spin

momentum pS in the (x,z) plane. Due to the vertical inhomogeneity w(x), these loops do not cancel each other, producing a backward spin momentum

pS
z ¼ @xsy=2 6¼ 0 (semitransparent arrows). The circularly-polarized evanescent wave (d) also carries the usual longitudinal spin szpsw shown in

(e) by multiple semitransparent loops of the spin momentum in the (x,y) plane (cf. Fig. 1). Due to the vertical inhomogeneity w(x), these loops produce

transverse helicity-dependent spin momentum (8) pS
y ¼ � @xsz=2 / s kk=kzð Þw. The evanescent wave also possesses polarization-independent

‘superluminal’ orbital momentum (8) pO / kz�z4k�z. (c,f) The orbital momentum and spin AM are locally transferred to the probe particle thereby

exerting: an anomalously large radiation force Fz / pO
z / kz4k; the usual longitudinal helicity-dependent torque Tzpsz; and the transverse

helicity-independent torque Typsy, equation (6). The transverse spin momentum pS
y does not exert radiation pressure in the dipole approximation (6),

but does produce a helicity-dependent transverse force (10) ~Fy / pS
y (f) in higher-order interactions with larger Mie particles (see Fig. 3).
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Relation to the Fedorov-Imbert controversy. Here we should
make a historical digression and note that an example of the
transverse helicity-dependent momentum in an evanescent field
was first found by F.I. Fedorov in 1955 (ref. 46). Incidentally, this
discovery caused a half-century-long controversy in the physics of
light reflection and refraction. Analysing the total internal
reflection of a polarized plane wave, Fedorov found a helicity-
dependent transverse component of the Poynting vector in the
transmitted evanescent field. Fedorov concluded that ‘the lateral
energy flux should lead to a specific light pressure’ and (by an
analogy with the Goos–Hänchen effect) that ‘the reflected beam
in the case of total reflection must be displaced in the lateral
direction’. Later, C. Imbert indeed observed such helicity-
dependent beam shift experimentally47, and the effect is now
known as the Imbert–Fedorov transverse shift or spin Hall effect
of light (for a review, see ref. 48).

The 50 years after Fedorov’s finding brought about numerous
controversies about this effect. Finally, only recently an accurate
theoretical description was given49,50, which was followed by a
precise experiment51 using quantum weak measurements (see
also refs 52,53). Remarkably, the current theory of the spin Hall
effect of light is completely unrelated to evanescent waves and
their transverse momentum. Indeed, the helicity-dependent beam
shift arises from the interference of multiple plane waves in the
beam, taking into account the geometric-phase effect, that is, the
spin-orbit interaction of light48. This shift occurs in partial
reflection or refraction, focusing, scattering and other optical
phenomena without any evanescent waves.

Thus, curiously, Fedorov predicted two fundamental helicity-
dependent but unrelated phenomena (transverse momentum and
beam shift) using a fictitious connection between them. Now,
from equations (3) and (8), we can conclude that Fedorov’s
transverse momentum is an example of Belinfante’s spin
momentum, which does not transport energy and therefore
cannot shift the field.

Interaction of the evanescent wave with Mie particles. The
evanescent field (7) represents an exceptional configuration with
a pure spin momentum without any orbital part in the transverse
y-direction. This offers a unique opportunity to investigate this
fundamental field-theory quantity per se. Equation (6) show that
the spin momentum does not appear in the dipole interaction
with small point-like particles. But does this result hold true for
larger particles and higher-order interactions? To address this
question, we examine the interaction of the evanescent optical
field with finite-size Mie particles.

The Mie scattering theory provides an exact solution for the
plane-wave interaction with an isotropic spherical particle. Using
the Maxwell stress tensor, one can calculate the flux of the
momentum and AM through a sphere enclosing the particle, and
thereby determine the force and torque acting on the particle54.
Recently, we developed and successfully tested an extension of the
Mie theory (based on complex-angle rotation of the standard
theory), which describes the scattering of the incident evanescent
wave (7)41 (see also refs 55,56). Using this exact semi-analytical
method, we calculate the radiation force and torque acting on the
particle of radius a, complex permittivity ep, and permeability mp,
immersed in the evanescent field (7).

Figure 3a,c shows the schematic of the corresponding experi-
ment using the total internal reflection at a glass prism. For this
numerical experiment, we use parameters corresponding to real
experiments manipulating particles with evanescent fields (for
example see refs 57–62). Namely, we consider radiation with the
wavelength l¼ 650 nm, a gold particle (ep¼ � 12.2þ 3i, mp¼ 1) in
water (e¼ 1.77, m¼ 1), and near-critical total internal reflection (the
angle of incidence is y¼ 51�¼ ycþ 1.5�) from the interface

between heavy flint glass (e1¼ 3.06, m1¼ 1) and water.
Calculations of the corresponding wave fields and characteristics
are given in the Supplementary Notes 2 and 3. The resulting
force and torque components (normalized by F0¼ a2|A1|/4p
and T0¼ F0/k, with A1 being the amplitude of the incident
wave in the glass), as functions of the dimensionless particle
radius ka are shown in Fig. 3b,d (see also Supplementary Fig. 4
and Supplementary Table 1). These are the main numerical
results of our work, which offer several new experiments for the
detection of extraordinary spin and momentum properties of
evanescent waves.

Figure 3b depicts the radiation torque components for right-
hand and left-hand circularly-polarized waves (m¼±i, s¼±1).
While the longitudinal torque Tz from the usual spin sz flips
with the sign of s, the transverse torque Ty is helicity-
independent and present even in the linear-polarization Imm¼ 0
case. This confirms the presence of the transverse helicity-
independent spin AM (8) sy in the evanescent field and its
transfer to the particle. For small Rayleigh particles, kaoo1, the
torque is described by the dipole approximation (6). Due to the
strong dual (electric–magnetic) asymmetry of the gold, the torque
appears mostly from the electric part of the spin (5): TCg� 1

Im(ae)se, where the electric polarizability is proportional to the
particle’s volume: aep(ka)3, while the magnetic polarizability is
small: amp(ka)5C0 (refs 63,64). Therefore, the transverse torque
is maximal for the TM-mode with m¼ 0 and sy¼ sey, and minimal
for the TE-mode with m¼N and sy¼ smy (see Supplementary
Notes 2 and 3).

The dual asymmetry results in another remarkable effect.
Namely, for waves linearly diagonally-polarized at ±45�
(m¼±1), a vertical radiation torque Tx appears, which is
proportional to the degree of diagonal polarization
w ¼ 2Rem

1þ mj j2 2 � 1; 1½ �. This torque signals the presence of the
vertical electric spin component:

sex ¼ � smx ¼ w
kk
2k2

z

w
o
; ð10Þ

which arises from the diagonal-electric-field rotation in the (y,z)-
plane (see equation (7) and Supplementary Note 2). Importantly,
the total vertical spin vanishes in (9), because the electric and
magnetic fields rotate in opposite directions: sx¼ sexþ smx¼ 0.
Nonetheless, the dual-asymmetric gold particle unveils the
electric vertical spin (10), as shown in Fig. 3b.

Figure 3d shows the longitudinal and transverse components of
the radiation force for circular (m¼±i, s¼±1) and diagonal
(m¼ w¼±1) polarizations. The longitudinal force Fz represents
the radiation pressure (mostly polarization-independent) from
the orbital momentum pO

z . Akin to the torque, it exhibits an
effective electric-dipole interaction F ’ g� 1Im aeð ÞpO

e in the
Rayleigh regime kaoo1. The transverse force vanishes in this
regime, Fy¼ 0, which confirms the ‘virtual’ character of the spin
momentum.

Nonetheless, a non-zero helicity-dependent transverse force
arises for larger Mie particles with kaB1. This force originates
from the higher-order interaction between electric- and magnetic-
induced dipoles, and in the quadratic dipole–dipole approximation
it can be written as63,64 (see Supplementary Note 3)

~F ¼ g� 1 k3

3
�Re aea�m

	 

Re~pþ Im aea�m

	 

Im~p

� �
: ð11Þ

Here we introduced the complex Poynting momentum:
~p ¼ gk E��Hð Þ, with Re~p ¼ p ¼ pOþ pS being the usual
Poynting vector and Im~p / Im E��Hð Þ characterizing an
alternating flow of the so-called ‘stored energy’2. Alongside
with the transverse s-dependent spin momentum (8)
Re~py ¼ pS

y / s kk=kzð Þw, the evanescent wave (7) possesses a
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w-dependent transverse imaginary Poynting momentum (see
Supplementary Note 3)

Im ~py ¼ � w
kk
kz

w
o
: ð12Þ

These two transverse momenta determine two contributions
to the transverse dipole–dipole force (11): ~Fy / �Re aea�m

	 

pS

yþ
Im aea�m
	 


Im~py . In complete agreement with this, numerical
calculations in Fig. 3d show s-dependent and w-dependent
transverse radiation forces on Mie particles with kaB1, which
vanish as ~Fypaeamp(ka)8 at kaoo1. This proves the presence
and observability of the transverse Belinfante’s spin momentum
in the evanescent optical field.

Detailed analysis and calculations of all torque and force
components for all basic polarizations m¼ 0,N,±i,±1 can be

found in the Supplementary Note 3, Supplementary Figs 4 and 5,
and Supplementary Table 1.

Discussion
To summarize, we have found that a single evanescent electro-
magnetic wave offers a rich and highly non-trivial structure of the
local momentum and spin distributions. In sharp contrast to
standard photon properties, evanescent waves carry helicity-
independent transverse spin and helicity-dependent transverse
momentum. Moreover, the transverse momentum turns out to be
a fundamental spin momentum introduced by Belinfante in field
theory and first remarked in optics (as an unusual Poynting
vector) by Fedorov. We have examined the measurements of the
extraordinary spin and momentum in the evanescent field by
analysing its interaction with a probe particle. Analytical
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evaluations and exact numerical simulations based on parameters
of typical optical-manipulation experiments show that the
transverse helicity-independent spin (and also the vertical electric
spin for diagonal polarizations) can be detected straightforwardly
via the radiation torque exerted on an absorbing small particle.
At the same time, the Belinfante–Fedorov’s spin momentum
does not exert the standard optical pressure in the dipole
approximation, which confirms its ‘virtual’ character (in contrast
to Fedorov’s interpretation). Nonetheless, it appears detectable (in
contrast to the field-theory interpretation) via a helicity-
dependent transverse optical force from the higher-order
interaction with Mie particles. Thus, an exceptional evanescent-
wave structure with pure spin transverse momentum offers
a unique opportunity for the direct observation of this
fundamental field-theory quantity, which was previously
considered as ‘virtual’.

In total, this work offers four novel experiments for the
detection of extraordinary momentum and spin properties of a
single evanescent wave (red and green curves in Fig. 3).
These proposed experiments could detect the following optical
torques and forces. First, the transverse helicity-independent
torque Ty indicating the transverse spin sy (Fig. 3b, equations (6)
and (9)). Second, the vertical diagonal-polarization-dependent
torque Tx exerted on a dual-asymmetric (for example,
electric-dipole) particle and caused by the vertical electric spin
sex (Fig. 3b and equation (10)). Third, the transverse helicity-
dependent force ~Fy produced by the transverse spin momentum
pS

y (Fig. 3d, equations (8) and (11)). Fourth, the transverse
diagonal-polarization-dependent force ~Fy , which is associated with
the transverse imaginary Poynting vector Im~py (Fig. 3d, equations
(11) and (12)).

These results add a distinct chapter in the physics of
momentum and spin of classical and quantum fields, and offers
a variety of non-trivial light-matter interaction effects involving
evanescent fields.
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