ПРОГРАММА РАСЧЕТА ПАРАМЕТРОВ МИКРОЧАСТИЦ НА ОСНОВЕ ТЕОРИИ ФУНДАМЕНТАЛЬНОГО ПОЛЯ И.Л. ГЕРЛОВИНА

Целью настоящей публикации является представление разработанной программы и машинного результатов расчета персональном компьютере по этой программе формулам, параметров микрочастиц по выведенным в Теории Фундаментального Поля, разработанной талантливым советским физиком-теоретиком И.Л. Герловиным 1960-х – 1980-х годах.

Программа расчёта параметров микрочастиц разработана по формулам Периодического Закона Микрочастиц (ПЗМ), являющегося составной частью разработанной И.Л. Герловиным Теории Фундаментального Поля (ТФП). При составлении программы по опубликованным в литературе ТФП [1-6] формулам был применен пакет программ МАТЛАБ – интерактивной системы выполнения научных и инженерных расчетов с массивами данных на персональных компьютерах. Настоящая публикация представляет собой разработанный комплект т.файлов (с комментариями) пакета программ МАТЛАБ для машинного расчета параметров 1, 2 и 3 рядов микрочастиц основных состояний (1-4) по формулам [5, табл.16.1] с исправлением опечаток и ошибок путем их сравнения с опубликованными ранее [2 - 4]. Примененные в разработанных т.файлах обозначения сведены в прилагаемой таблице. Для используемых в расчетах вычисленных параметров оптимальных частиц «ОР» (протона и электрона) применены соответствующие индексы «p, e». Файлы публикуются в текстовом редакторе PDF. Приведены таблицы (PDF) результатов выполненных по разработанной программе расчетов внутренних параметров микрочастиц и, в качестве примера, внешних параметров выбранных по 1-2 микрочастицам ПЗМ ДЛЯ каждого ряда целью ИХ сравнения опубликованными И.Л. Герловиным результатами [5,6].

самостоятельного выполнения расчетов ПО представленному быть конвертированы комплекту файлов они должны т.файлы использованы версии программ МАТЛАБ, начиная с 6-6.1 и выше. Однако эффективными расчётов наиболее ДЛЯ ПО времени графической интерпретации результатов представляются последние версии программы МАТЛАБ: R2021a, R2021b, рассчитанные на использование 64 разрядных операционных систем Windows-7, Windows-10.

Литература

- 1. Герловин И.Л. Систематизация элементарных частиц и соображения по основам будущей теории. Препринт ИТФ АН УССР № 69-53. Киев, 1969.
- 2. Герловин И.Л. Основы единой релятивисткой квантовой теории фундаментального поля (ТФП). ГАО АН СССР, деп. ВИНИТИ, № 7084-73.
- 3. Протодьяконов М.М., Герловин И.Л. Электронное строение и физические свойства кристаллов. М., Наука, 1975.
- 4. Каталог параметров предсказанных и известных элементарных частиц (Периодический Закон Микрочастиц (ПЗМ)), 2-й выпуск. ВМФ СССР, ВВМИОЛУ им. Ф.Е. Дзержинского, 1977.
- 5. Герловин И.Л. Основы единой теории всех взаимодействий в веществе. Л., Энергоатомиздат, 1990.
- 6. Gerlovin I.L. To live without disasters. St. Petersburg, 1992.

ТАБЛИЦА СООТВЕТСТВИЯ ИСПОЛЬЗОВАННЫХ ОБОЗНАЧЕНИЙ

НАИМЕНОВАНИЕ ПАРАМЕТРА	Единица Изм.	ОБОЗНАЧЕНИЯ В КНИГАХ ТФП	ОБОЗНАЧЕНИЕ ПРИ ПРОГРАММИРОВАНИИ В МАТЛАБЕ
Фундаментальные постоянные для расчёта		K, Kp, K1, K1p, A,	K, Kp, K1, K1p, A,
Обозначение оптимальной частицы в ряду		Nop, Ndop	Nop, Ndop
Обозначение состояний		Δ (основные 1, 2, 3, 4), всего 32 мультиплета	Основные: 1 – без индекса, 2 – a, 3 – d, 4 – da
Обозначение частиц и античастиц в состояниях		частицы - Р, античастицы - А	Р - без обозначения, античастицы - А
Среднее значение общего числа субчастиц в ряду		n	n
Ограничительная функция поиска (n)		F(n)	F(n)
Число субчастиц на наружной и внутренней окружностях модели микрочастиц		n1, n2	n1, n2
Линейные скорости движения субчастиц относительно скорости света		$\beta 1, \beta 2, \beta L, \Delta \beta$	b1, b2, bL, db,
Радиусы наружной (сфера Шварцшильда) и внутренней окружностей модели микрочастицы	СМ	R1, R2	R1, R2
Вспомогательные расчетные параметры		kx, ky, Q1, tv, tvd, dR=R2/R1	C1=1-b1^2, C2=1-b2^2, kx, ky, Q1, t, td, dR
Вспомогательные коэффициенты		A1, A2, Am	A1, A2, Am
Фоновая диэлектрическая проницаемость вакуума		e_{Φ}	ef
«Фоновый коэффициент» вакуума		Кф	kf
Диэлектрическая проницаемость вакуума		e1, e2, e1d, e2d	e1, e2, e1d, e2d

НАИМЕНОВАНИЕ ПАРАМЕТРА	Единица Изм.	ОБОЗНАЧЕНИЯ В КНИГАХ ТФП	ОБОЗНАЧЕНИЕ ПРИ ПРОГРАММИРОВАНИИ В МАТЛАБЕ
Наружный фундаментальный заряд	(hi*c) ^{1/2}	q1,q1n, q1d, q1dn	q1,q1n, q1d, q1dn
Наблюдаемый электрический заряд	$qe=(\alpha*hi*c)^{1/2}$	q, qd, qn, qdn	q, qd, qn, qdn
Macca	me	m, mn, md, mdn	m, mn, md, mdn
Суммарный механический момент	hi	s, sd	s, sd
Спин (проекция (s, sd) на ось прецессии)	hi	J, Jd	J, Jd
Косинусы углов момента процессии (s, sd)		$\cos(\alpha)$	cos(angl)
Магнитный момент		μ1, μ1n, μ1d, μ1dn,	Mu, Mun, Mud, Mudn
Эффективное значение заряда, массы, спина и магнитного момента		$q_{\flat\varphi},\;m_{\flat\varphi},\;J_{\flat\varphi},\;\;\mu_{\flat\varphi},$	qf, mf, Jf, Muf
Постоянная Планка	h, ħ	h, ħ=h/2/pi	h, hi =h/2/pi
Скорость света	С	c	С
Масса протона	me	m_p	mp
Масса электрона	me	m _e	me
Постоянная тонкой структуры		$\alpha, \alpha_e, \alpha_{inv}$	AL, ALe, ALi
Классическое время жизни	сек	$ au_{\scriptscriptstyle \mathrm{KJ}}$	tcl, tcla, tcld, tclda
Время жизни квантовое	сек	$ au_{ ext{\tiny KB}}$	tcv, tcva, tcvd, tcvda
Ширина линии резонанса (h/eV/ т)	МэВ	Γ	G

Примечание: При выполнении машинного расчета параметров микрочастиц в публикациях ТФП [4-6] использовалось значение π =3.14159226535 8979323846264338327950288 в 36 значащих цифр. В разработанной программе использовалось значение π =3.14159226535 8979 в 16 значащих цифр.