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Understanding quantum dynamics away from
equilibrium is an outstanding challenge in the
modern physical sciences. It is well known
that out-of-equilibrium systems can display a
rich array of phenomena, ranging from self-
organized synchronization to dynamical phase
transitions1,2. More recently, advances in the
controlled manipulation of isolated many-body
systems have enabled detailed studies of non-
equilibrium phases in strongly interacting quan-
tum matter3–6. As a particularly striking ex-
ample, the interplay of periodic driving, disor-
der, and strong interactions has recently been
predicted to result in exotic “time-crystalline”
phases7,8, which spontaneously break the dis-
crete time-translation symmetry of the underly-
ing drive9–12. Here, we report the experimen-
tal observation of such discrete time-crystalline
order in a driven, disordered ensemble of ∼ 106

dipolar spin impurities in diamond at room-
temperature13–16. We observe long-lived tempo-
ral correlations at integer multiples of the fun-
damental driving period, experimentally identify
the phase boundary and find that the temporal
order is protected by strong interactions; this or-
der is remarkably stable against perturbations,
even in the presence of slow thermalization17,18.
Our work opens the door to exploring dynami-
cal phases of matter and controlling interacting,
disordered many-body systems19–21.

Conventional wisdom holds that the periodic driving of
isolated, interacting systems inevitably leads to heating
and the loss of quantum coherence. In certain cases, how-
ever, fine-tuned driving can actually decouple quantum
degrees of freedom from both their local environment15

and from each other22. Recently, it has been shown that
strong disorder, leading to the so-called many-body local-
ization (MBL)23,24, allows the systems to retain memory
of their initial state for long times, enabling the obser-

vation of novel, out-of-equilibrium quantum phases3,5,25.
One example is the discrete time crystal (DTC)9–12, a
phase which is nominally forbidden in equilibrium26,27.
The essence of the DTC phase is an emergent, collec-
tive, subharmonic temporal response11. While this phe-
nomenon resembles the coherent revivals associated with
dynamical decoupling14, its nature is fundamentally dif-
ferent as it is induced and protected by interactions
rather than fine-tuned control fields. It is especially in-
triguing to investigate the possibility of DTC order in
systems that are not obviously localized28. This is the
case for dipolar spins in three dimensions, where the in-
terplay between interactions and disorder can lead to crit-
ical sub-diffusive dynamics18,29.

We experimentally investigate the formation of dis-
crete time-crystalline order in an ensemble of nitrogen
vacancy (NV) spin impurities in diamond. Each NV cen-
ter has an electronic S = 1 spin, from which we isolate an
effective two level system by applying an external mag-
netic field. These isolated spin states can be optically
initialized/detected and manipulated via microwave ra-
diation13,14,16 (see Fig. 1a and Methods). Our sample
has a high concentration (45 ppm) of NV centers, giv-
ing rise to strong long-range magnetic dipolar interac-
tions18. The spins are also subject to multiple sources of
disorder owing to lattice strain, paramagnetic impurities
and the random positioning of NV centers. A strong,
resonant microwave field is used to control spin orienta-
tions, resulting in an effective Hamiltonian (in the rotat-
ing frame),18

H(t) =
∑
i

Ωx(t)Sxi + Ωy(t)Syi + ∆iS
z
i

+
∑
ij

(Jij/r
3
ij)(S

x
i S

x
j + Syi S

y
j − Szi Szj ). (1)

Here, Sµi (µ ∈ {x, y, z}) are Pauli spin-1/2 operators
acting on the effective two-level system spanned by the
spin states |ms = 0〉 and |ms = −1〉, Ωx(y) is the Rabi
frequency of the microwave driving, ∆i is a disordered
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FIG. 1: Experimental setup and sequence for observ-
ing time-crystalline order. a, NV centers in a nanobeam
fabricated from black diamond are illuminated by a focused
green laser beam and irradiated by a microwave source.
Within one Floquet cycle, the spins evolve under a dipolar
interaction for duration τ1, followed by a global spin rota-
tion acting for duration τ2. Experimental sequence: spins
are prepared in the (|ms = 0〉 + |ms = −1〉)/

√
2 state using

a microwave (−π/2)-pulse along the ŷ axis. Subsequently,
the spins evolve for τ1 under a strong microwave field aligned
along the x̂ axis, immediately followed by a strong microwave
θ-pulse along the ŷ axis. After n repetitions of the Floquet
cycle, the spin polarization is read out by applying another
microwave (π/2)-pulse along the ŷ axis. b-d, Representa-
tive time traces of the spin polarization P (nT ) and respective
Fourier spectra for different values of interaction time τ1 and
θ: (b) τ1 = 92 ns, θ = π, (c) τ1 = 92 ns, θ = 1.034π, and (d)
τ1 = 989 ns, θ = 1.034π. Data are averaged over more than
2 · 104 measurements. Dashed lines in c indicate ν = ±θ/2π.

on-site field with approximate standard deviation W =
2π × 4.0 MHz, rij is the distance between spins i and
j (average nearest-neighbor separation r0 ∼ 8 nm), and
Jij are the orientation dependent coefficients of the dipo-
lar interaction. We note that the average interaction,
Jij/r

3
0 ∼ 2π× 105 kHz18, is significantly faster than typ-

ical spin coherence times16.
In order to probe the existence of time-crystalline or-

der, we monitor the spin dynamics of an initial state po-
larized along the +x̂ direction. We begin by applying
continuous microwave driving (spin locking) along x̂ with
Rabi frequency Ωx = 2π × 54.6 MHz for a duration τ1
(Fig. 1a). Next, we rotate the spin ensemble by an angle
θ around the ŷ axis using a strong microwave pulse with
Ωy = 2π × 41.7 MHz for duration τ2 = θ/Ωy � τ1. This
two-step sequence defines a Floquet unitary with a total
period T = τ1 + τ2 and is repeated n times, before the
polarization P (nT ) along the x̂ axis is measured. The
resulting polarization dynamics are analyzed in both the
time and frequency domain. Repeating these measure-
ments with various values of τ1 and θ allows us to in-
dependently explore the effect of interactions and global
rotations. We note that τ1 is chosen as an integer multi-
ple of 2π/Ωx in order to avoid a self-correcting dynamical
decoupling15.

Figure 1b-d depicts representative time traces and the
corresponding Fourier spectra, S(ν) ≡∑n P (nT )ei2πnν ,
for various values of τ1 and θ. For relatively short interac-
tion time τ1 = 92 ns and nearly perfect π-pulses (θ ≈ π),
we observe that the spin polarization P (nT ) alternates
between positive and negative values, resulting in a sub-
harmonic peak at ν = 1/2 (Fig. 1b). In our experiment,
the microwave pulses have an intrinsic uncertainty ∼ 1%
stemming from a combination of spatial inhomogeneity
in the microwave fields, on-site potential disorder, and
the effect of dipolar interactions (see Methods). These
eventually cause the oscillations to decay after ∼ 50 pe-
riods. While such temporal oscillations nominally break
discrete time-translation symmetry, their physical origin
is trivial. To see this, we note that for sufficiently strong
microwave driving, Ωx �W,Jij/r

3
0, the dynamics during

τ1 are governed by an effective polarization-conserving
Hamiltonian18, Heff ≈

∑
i ΩxS

x
i +

∑
ij(Jij/r

3
ij)S

x
i S

x
j .

During τ2, the evolution can be approximated as Rθy ≈
e−iθ

∑
i S

y
i . When θ = π, this pulse simply flips the sign

of the x̂ polarization during each Floquet cycle, resulting
in the ν = 1/2 peak. However, this 2T -periodic response
originates from the fine tuning of θ and should not be ro-
bust against perturbations. Indeed, a systematic change
in the average rotation angle to θ = 1.034π causes the 2T -
periodicity to completely disappear, resulting in a modu-
lated, decaying signal with two incommensurate Fourier
peaks at ν = ±θ/2π (Fig. 1c). Remarkably, we find that
a rigid 2T -periodic response is restored when interactions
are enhanced by increasing τ1 to 989 ns, suggesting that
the ν = 1/2 peak is stabilized by interactions. In this
case, we observe a sharp subharmonic peak in the spec-
trum at ν = 1/2 and the oscillations in P (nT ) continue
beyond n ∼ 100 (Fig. 1d). We associate this with DTC
order9–12.

The robustness of DTC order at late times is further
explored in Fig. 2. With an interaction time τ1 = 790 ns
and θ = 1.034π, the polarization exhibits an initial de-
cay followed by persistent oscillations over the entire time
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FIG. 2: Long-time behavior of time-crystalline order.
a Representative time trace of the spin polarization P (nT )
in the crystalline phase (τ1 = 790 ns and θ = 1.034π). The
time-dependent intensity of the ν = 1/2 peak is extracted
from a short-time Fourier transformation with a time window
of length m = 20 shifted from the origin by nsweep. b Peak
height at ν = 1/2 as a function of nsweep for three different
pulse imperfections, θ = 1.00π (yellow), θ = 1.034π (green)
and θ = 1.086π (blue) (τ1 = 790 ns). Lines indicate fits to the
data using a phenomenological double exponential function.
The noise floor corresponds to 0.017, extracted from the mean
value plus the standard deviation of

∑
ν |S(ν)|2 excluding the

ν = 1/2 peak. c Extracted lifetime of the time-crystalline
order as a function of the interaction time τ1, for θ = 1.034π.
Shaded region indicates the spin life-time T ρ1 = 60± 2 µs due
to coupling with the external environment. The vertical error
bars display the statistical error (s. d.) from the fit.

window of our experimental observations (Fig. 2a). We
perform a Fourier transform on sub-sections of the time-
trace with a sweeping window of size m = 20 (Fig.
2a) and extract the intensity of the ν = 1/2 peak as
a function of the sweep position, nsweep (Fig. 2b). The
ν = 1/2 peak intensity clearly exhibits two distinct decay
timescales. At short times, we observe a rapid initial de-
cay corresponding to non-universal dephasing dynamics,
while at late times, we observe a slow decay indicative
of the persistence of DTC order. Interestingly, the long-
time decay rate seems relatively insensitive to the change
of θ from π to 1.034π, and to variations in the initial spin
states (see Methods), but significantly increases as one
approaches the DTC phase boundary near θ = 1.086π.
We fit the slow decay to an exponential to extract a life-
time for the time-crystalline order. As shown in Fig. 2c,
for θ = 1.034π, this lifetime increases with the effective
interaction strength (captured by τ1) and eventually ap-
proaches the independently measured spin depolarization
time T ρ1 ∼ 60 µs. This demonstrates that for sufficiently
strong interactions, the observed DTC order is only lim-
ited by coupling to the environment29.

To experimentally determine the DTC phase bound-
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FIG. 3: Phase diagram and transition. a Crystalline frac-
tion f as a function of θ obtained from a Fourier transform
at late times (50 < n ≤ 100). Vertical error bars are lim-
ited by the noise floor (see Methods), horizontal error bars
indicate the pulse uncertainty of 1%. Grey lines denote a
super-Gaussian fit to extract the phase boundary (see Meth-
ods). In a, b, red diamonds mark the phenomenological phase
boundary, identified as a 10% crystalline fraction. Horizon-
tal error bars denote the statistical error (s. d.) from the fit.
The colors of the round data points in b represent the ex-
tracted crystalline fraction at the associated parameter set.
The dashed line corresponds to a disorder-averaged theoret-
ical prediction for the phase boundary. Asymmetry in the
boundary arises from an asymmetric distribution of rotation
angles (see Methods). c Evolution of the Fourier spectra as a
function of θ for two different interaction times, τ1 = 385 ns
(top) and τ1 = 92 ns (bottom). d Bloch sphere indicating
a single spin trajectory of the 2T -periodic evolution under
the long-range dipolar Hamiltonian (red) and global rotation
(blue).

ary, we focus on the long-time behavior of the polar-
ization time traces (50 < n ≤ 100) and compute the
“crystalline fraction” defined as the ratio of the ν = 1/2
peak intensity to the total spectral power, f = |S(ν =
1
2 )|2/∑ν |S(ν)|2 (see Methods). Figure 3a shows f as a
function of θ for two different interaction times. For weak
interactions (τ1 = 92 ns), f has a maximum at θ = π but
rapidly decreases as θ deviates by ∼ 0.02π. However, for
stronger interactions (τ1 = 275 ns), we observe a robust



4

DTC phase which manifests as a large crystalline frac-
tion over a wide range 0.86π < θ < 1.13π. We associate
a phenomenological phase boundary with f = 10% and
observe that the boundary enlarges with τ1, eventually
saturating at τ1 ≈ 400 ns (Fig. 3b). The phase boundary
can also be visualized as the vanishing of the ν = 1/2
peak and the simultaneous emergence of two incommen-
surate peaks (Fig. 3c).

The rigidity of the ν = 1/2 peak can be qual-
itatively understood by constructing effective eigen-
states of 2T Floquet cycles. We approximate the uni-
tary time evolution over a single period as UT =
Rθye

−iHeffτ1 and solve for a self-consistent evolution
using product states as a variational ansatz. To
this end, we consider the situation where a typical
spin returns to its initial state after 2T : |ψ(0)〉 ∝
|ψ(2T )〉 = e−iθS

y

eiφiS
x

e−iθS
y

e−iφiS
x |ψ(0)〉, and self-

consistently determine the interaction-induced rotation
angle φi ≡

∑
j Jij/r

3
ij〈Sxj 〉τ1 ≈ J̄iτ1〈ψ(0)|Sx|ψ(0)〉,

where |ψ(0)〉 is the initial spin state and J̄i =
∑
j Jij/r

3
ij

(see Methods). One expects φi to change sign af-
ter each Floquet cycle, since the average polarization
〈ψ(0)|Sx|ψ(0)〉 should be flipped. Intuitively, the self-
consistent solution can be visualized as a closed path on
the Bloch sphere (Fig. 3d), where each of the four arcs
corresponds to one portion of the 2T periodic evolution.
When θ = π, such a solution always exists. More surpris-
ingly, even when θ 6= π, a closed path can still be found
for sufficiently strong interactions, |J̄iτ1| > 2|θi − π|; in
such cases, the deviation in θ away from π is compen-
sated by the dipolar interactions (Fig. 3d). We obtain
a theoretical phase boundary by numerically averaging
the self-consistent solution over both disordered spin po-
sitions and local fields. The resultant phase boundary
is in reasonable agreement with the experimental obser-
vations for short to moderate interaction times τ1, but
overestimates the boundary at large τ1 (dashed line, Fig.
3b, see Methods).

Finally, Fig. 4 demonstrates that the discrete time-
translation symmetry can be further broken down to
Z3

10–12,30,31, resulting in DTC order at ν = 1/3. Here,
we utilize all three spin states of the NV center. We
begin with all spins polarized in the |ms = 0〉 state and
evolve under the bare dipolar Hamiltonian for a dura-
tion τ1 (see Methods). Next, we apply two resonant mi-
crowave pulses, each of duration τ2, first on the transi-
tion |ms = 0〉 → |ms = −1〉 and then on the transition
|ms = 0〉 → |ms = +1〉. In combination, this sequence
of operations defines a single Floquet cycle with period
T = τ1 + 2τ2. As before, we measure the polarization,
P (nT ), defined as the population difference between the
|ms = 0〉 and |ms = −1〉 states (Fig. 4a). When each
of the applied microwaves corresponds to an ideal π-
pulse, this sequence realizes a cyclic transition with Z3

symmetry (Fig. 4b), which is explicitly broken by any
change in the pulse duration. The Fourier spectra of
P (nT ) for various pulse durations and two different val-
ues of τ1 are shown in Fig. 4c. With weak interactions
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FIG. 4: Z3 time-crystalline order. a Experimental se-
quence to demonstrate a 3T -periodic discrete time-crystalline
order. A single Floquet cycle is composed of three opera-
tions: time evolution under long-range dipolar Hamiltonian
and rapid microwave pulses for two different transitions. b Vi-
sualization of the 3T -periodicity in the polarization dynamics
for the case of θ = π. c Fourier spectra of the polarization
dynamics for two different interaction times and for three dif-
ferent rotation angles θ: 1.00π (red), 1.086π (blue) and 1.17π
(yellow). Dashed lines indicate ν = ±1/3.

(τ1 = 35 ns), the position of the peaks is extremely sen-
sitive to perturbations, but with sufficiently strong in-
teractions (τ1 = 387 ns) the peaks are pinned to a rigid
value of ν = 1/3 despite perturbations as large as 17%,
indicating the observation of ν = 1/3 DTC order.

Our observation of DTC order cannot be simply
explained within current theoretical frameworks based
upon either localization9–12 or pre-thermalization25,28.
In particular, the present system with long-range dipolar
interactions is not expected to be localized in either the
static or the driven cases. In the static case, it has been
previously demonstrated that it exhibits slow thermal-
ization associated with critical dynamics18. In the driven
case, the long-time evolution is governed by the average
Hamiltonian D ' ∑i(Jij/r

3
ij)S

x
i S

x
j + (θ − π)/T

∑
i S

y
i ,

which likewise does not yield localized dynamics17,32. We
further note that the effective Hamiltonian of the Z3

DTC includes not only Ising-type interactions but also
spin exchange interactions, providing additional channels
for thermalization (see Methods).

In principle, even in the absence of localization, time-
crystalline order can persist for a long, but finite, pre-
thermal time-scale25,28. Within this time-scale, the spin
system relaxes to a pre-thermalized state, defined as the
thermal ensemble of D with a temperature determined by
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the energy density of the initial state. Since our initially
polarized state is effectively at infinite temperature with
respect to D (owing to the random signs of the dipolar
couplings), one does not expect to observe pre-thermal
DTC order. This is in stark contrast to our actual ob-
servations, which show that the DTC lifetime is limited
only by the depolarization time T ρ1 due to coupling with
the environment (Fig. 2c). We have explicitly verified
that the DTC order is not significantly affected by vary-
ing the initial polarization (see Methods). One possible
explanation is that due to slow critical thermalization18,
the spins in our system do not reach even a pre-thermal
state. Such a critical regime of DTC requires further the-
oretical investigation. Finally, the possibility that peri-
odic driving itself can induce localization cannot be ruled
out.

A number of remarkable phenomena in quantum dy-
namics have recently been observed in engineered many-
body systems consisting of ten to a few hundred parti-
cles3–6,33. Our present observations indicate that robust
DTC order can occur in large systems without fine-tuned
interactions and disorder, even in the regime where lo-
calization is nominally not expected to occur. Beyond
raising important questions about the role of localiza-
tion and long-range interactions in studies of driven sys-
tems, our work opens up several new avenues for fun-
damental studies and potential applications. In particu-

lar, it should be possible to extend these studies to ex-
plore novel, dynamical quantum phases in more complex
driven Hamiltonians. It is interesting to explore if such
novel phases can be used to create and stabilize coher-
ent quantum superposition states for applications such
as quantum metrology19–21.
N ote: During the preparation of this manuscript, we

became aware of a closely related work34 where DTC
order was observed in a system of 10 trapped ions.
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& Hanson, R. Universal dynamical decoupling of a sin-
gle solid-state spin from a spin bath. Science 330, 60–63
(2010).

16 Doherty, M. W. et al. The nitrogen-vacancy colour centre
in diamond. Physics Reports 528, 1 – 45 (2013).

17 Anderson, P. W. Absence of diffusion in certain random
lattices. Physical Review 109, 1492 (1958).

18 Kucsko, G. et al. Critical thermalization of a disordered
dipolar spin system in diamond. arXiv:1609.08216 (2016).

19 Deutsch, C. et al. Spin self-rephasing and very long coher-
ence times in a trapped atomic ensemble. Physical Review
Letters 105, 020401 (2010).

20 Rey, A. M., Jiang, L., Fleischhauer, M., Demler, E. &
Lukin, M. D. Many-body protected entanglement genera-
tion in interacting spin systems. Phys. Rev. A 77, 052305
(2008).

21 Cappellaro, P. & Lukin, M. D. Quantum correlation in
disordered spin systems: Applications to magnetic sensing.
Physical Review A 80, 032311 (2009).

22 Waugh, J., Huber, L. & Haeberlen, U. Approach to high-
resolution NMR in solids. Physical Review Letters 20, 180
(1968).



6

23 Basko, D., Aleiner, I. & Altshuler, B. Metal–insulator
transition in a weakly interacting many-electron system
with localized single-particle states. Annals of physics 321,
1126–1205 (2006).

24 Nandkishore, R. & Huse, D. A. Many-body localization
and thermalization in quantum statistical mechanics. An-
nual Review of Condensed Matter Physics 6, 15–38 (2015).

25 Abanin, D. A., De Roeck, W. & Huveneers, F. Expo-
nentially slow heating in periodically driven many-body
systems. Physical Review Letters 115, 256803 (2015).

26 Bruno, P. Impossibility of spontaneously rotating time
crystals: a no-go theorem. Physical Review Letters 111,
070402 (2013).

27 Watanabe, H. & Oshikawa, M. Absence of quantum time
crystals. Physical Review Letters 114, 251603 (2015).

28 Else, D. V., Bauer, B. & Nayak, C. Pre-thermal time
crystals and floquet topological phases without disorder.
arXiv:1607.05277 (2016).

29 Choi, J. et al. Depolarization dynamics in a strongly inter-
acting solid-state spin ensemble. arXiv:1608.05471 (2016).

30 von Keyserlingk, C. W. & Sondhi, S. L. Phase struc-
ture of one-dimensional interacting Floquet systems. II.
Symmetry-broken phases. Phys. Rev. B 93, 245146 (2016).

31 Sreejith, G. J., Lazarides, A. & Moessner, R. Parafermion
chain with 2π/k Floquet edge modes. Phys. Rev. B 94,
045127 (2016).

32 Yao, N. Y. et al. Many-body localization in dipolar sys-
tems. Physical Review Letters 113, 243002 (2014).

33 Bohnet, J. G. et al. Quantum spin dynamics and entan-
glement generation with hundreds of trapped ions. Science
352, 1297–1301 (2016).

34 Zhang, J. et al. Observation of a Discrete Time Crystal.
ArXiv e-prints (2016). 1609.08684.



7

Methods

A. Experimental details

Our sample and experimental setup have been previ-
ously described18. We utilize a diamond sample contain-
ing a high concentration (∼ 45 ppm) of NV centers, corre-
sponding to an average NV-NV separation of 5 nm. For
a single crystalline orientation of NV centers, selected
by applying an external magnetic field, this corresponds
to an average separation of 8 nm, resulting in a typical
dipolar interaction strength of 2π × 105 kHz. The sys-
tem furthermore exhibits strong on-site energy disorder,
owing to the effects of lattice strain, the random posi-
tion of NV centers as well as the presence of scattered
paramagnetic impurities (consisting mainly of P1 cen-
ters and 13C nuclear spins). For each NV, the effective
random field ∆i is therefore a function of its local envi-
ronment, including interaction effects of neighboring NV
centers. This results in an approximately Gaussian distri-
bution with standard deviation W = 2π × 4.0 MHz. We
extract W by measuring the linewidth of an ESR spec-
trum with sufficiently weak microwave driving strength
to avoid power broadening. In order to control the exper-
imental probe volume, we fabricate a diamond nanobeam
structure (∼ 300 nm × 300 nm × 20 µm) and confocally
address a region of ∼ 300 nm diameter using a green
laser (532 nm). This realizes an effective three dimen-
sional excitation volume containing ∼ 106 NV centers.
By applying an external magnetic field along one of the
diamond crystal axes, we spectrally isolate one group of
NV centers and selectively address an effective two-level
system between the |ms = −1〉 and |ms = 0〉 spin states
via coherent microwave radiation. The addition of a mi-
crowave IQ-mixer allows for arbitrary rotations around
any linear combination x̂ and ŷ.

B. Experimental sequence

Initial polarization of NV centers into |ms = 0〉 is per-
formed via laser illumination at a wavelength of 532 nm,
a power of 50 µW and a duration of 20 µs. Subse-
quent application of a microwave (−π/2)-pulse along the
ŷ axis is used to coherently rotate the spin ensemble
into |+〉 = (|ms = 0〉 + |ms = −1〉)/

√
2. The spins are

then subjected to continuous driving at a Rabi frequency
2π × 54.6 MHz along the x̂ axis for a duration τ1. This
so-called spin-locking technique suppresses two-spin (flip-
flip and flop-flop) processes due to energy conservation
as well as to decouple spins from their environment18.
In our sample, this technique leads to spin lifetimes of
∼ 60 µs29. Finally, we apply a short microwave pulse
along the ŷ axis over an angle θ ∼ π. We repeat this Flo-
quet cycle with various values of θ, controlled by chang-
ing the Rabi driving strength as well as the pulse du-
ration. The imperfection in microwave manipulations
(for initialization into |+〉 as well as rotation angles θ)
amounts to ∼ 1%, arising from a combination of spa-
tial inhomogeneity of the driving field (0.5%) as well as
on-site potential disorder (0.9%). Following a coherent
time evolution, the spin state of the NV ensemble is op-
tically detected by applying a final (π/2)-pulse along the
ŷ axis and measuring the population difference in the
|ms = 0〉 and |ms = −1〉 basis. The polarization is de-
fined as P = |ms = 0〉 − |ms = −1〉 by calibrating the
NV fluorescence using a Rabi oscillation contrast mea-
surement. To avoid heating of the sample, resulting in
drifts in the Rabi frequency, a waiting time of 600−900µs
is implemented before the sequence is repeated. The min-
imum spacing between microwave pulses is maintained at
1 ns.

To understand the effect of different initial states on
the DTC phase, we replaced the initial (−π/2)-pulse with
a (−π/3)-pulse. This results in the preparation of a
global spin state, which is rotated from the x̂ axis by
π/6. Despite this change, the measured DTC lifetime
(47.6± 2.4µs) agrees well with that of the polarized spin
state (49.2 ± 3.3µs), demonstrating that DTC order is
insensitive to the initial state.

C. Experimental identification of phase boundary

To identify the position of the phase boundary in our
experiment, we define the crystalline fraction f as f =
|S(ν = 1

2 )|2/∑ν |S(ν)|2. Error bars in f are calculated
via error propagation in consideration of the noise floor in
the Fourier spectrum; each measured spectrum contains
a background noise level σn, resulting in a variation of f
as,

δf = f

√√√√(σn/|S(ν =
1

2
)|2
)2

+

(
Nσn/

∑
ν

|S(ν)|2
)2

− 2Nσ2
n/

(
|S(ν =

1

2
)|2
∑
ν

|S(ν)|2
)
, (2)

where N = 50 is the number of points in the Fourier
spectrum. This gives rise to an uncertainty in the DTC

fraction: f ∈ [f − δf, f + δf ] (Fig. 3a). To extract
the phase boundary, we use a phenomenological, super-
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Gaussian function

Fτ1(θ) =

 fmax
τ1 exp

[
− 1

2

(
|θ−θ0|
σ−

)p]
, θ ≤ θ0

fmax
τ1 exp

[
− 1

2

(
|θ−θ0|
σ+

)p]
, θ ≥ θ0

(3)

where σ±, θ0, p are the characteristic width, central po-
sition and the power of the super-Gaussian fit, and fmax

τ1
is the maximum value of the DTC fraction for a given
duration τ1. The proposed function naturally captures
the observed asymmetry in the phase boundary. We de-
fine the phase boundary as the rotation angle θ± where

Fτ1(θ±) = 0.1, i.e. θ± = θ0 ± σ±
[
2 ln(fmax

τ1 /0.1)
] 1

p . Er-
rors in the phase boundary are derived from the fit un-
certainties.

D. Theoretical description

As a variational ansatz, we consider the time evolu-
tion of a homogeneous product state of the form |Ψ〉 =
|ψ0〉⊗N with |ψ0〉 = cos(θ0/2)|+〉 + sin(θ0/2)eiφ0 |−〉,
where |±〉 = (|ms = 0〉 ± |ms = −1〉)/

√
2. The quali-

tative behavior does not change even if we allow spins
to be oriented in different directions. An approxi-
mate eigenstate for the time evolution over two peri-
ods is obtained by solving the equation for a single
spin, |ψ0〉 = e−iθS

y

eiφiS
x

e−iθS
y

e−iφiS
x |ψ0〉 with a self-

consistently determined φi = J̄i〈ψ0|Sx|ψ0〉 where J̄i =∑
j Jij/r

3
ij is the total strength at site i. The sign of φi

is flipped in the second evolution as the spin polariza-
tion along the x̂ direction alternates in each cycle. Note
that we have ignored the effects of the on-site disorder
potential ∆i, interactions during global rotations and ro-
tations induced by Ωx. This is justified due to the high
microwave driving strength Ωx(y) � W and Ωxτ1 being
integer multiples of 2π. (The effects of on-site disorder
are fully included in the numerical computations.) A
non-trivial solution (θ0 6= ±π) is obtained if the first two
rotations result in a vector that is rotated by π along the
ŷ axis (Fig. 3d), which is satisfied when φ0 = mπ − φi/2
with m ∈ Z and cot θ0 = −(−1)m tan(θ/2) sin(φi/2).
Solving for cos2 θ0 yields

cos2 θ0 =
tan2(θ/2) sin2(φi/2)

1 + tan2(θ/2) sin2(φi/2)
. (4)

Using φi = J̄iτ1 cos θ0, one can show that a solution exists
only when | tan (θ/2)J̄iτ1/4| > 1, implying that |θ−π| <
|J̄iτ1/2| in the vicinity of θ ≈ π.

The linear dependence of the phase boundary is consis-
tent with the phase diagram provided in Ref.9,12. As long
as a solution exists, small variations in θ correspond to a
smooth deformation of the closed trajectory. Therefore,
the existence of such a closed path stabilizes the time-
crystalline phase. We emphasize that such a 2T -periodic
path is a consequence of interactions; without the change
of sign in φi, the eigenstates of the unitary evolution over

one or two periods coincide, and therefore, unless the
rotation angle is fine-tuned, T -periodic motion cannot
be broken into a 2T period. The eigenstates of unitary
evolution over one period can be obtained as even and
odd linear combinations, (|Ψ〉 ± e−iεiU1|Ψ〉)/

√
2, where

U1 = ⊗i(e−iθS
y
i e−iφiS

x
i ), and the quasi-energy eigenvalue

is given by ei2εi = 〈Ψ|(U1)2|Ψ〉.
To estimate the phase boundary, we numerically solve

the self-consistency equation. Here, we include the ef-
fects of on-site disorder potential ∆i in all four rotations
as well as the disorder in J̄i arising from the random po-
sitions of NV centers. The distribution of J̄i is simulated
for 1000 spins, randomly distributed in three dimensions
with an average separation r0 and minimum cutoff dis-
tance rmin = 3 nm (limited by NV-NV electron tunnel-
ing29). Instead of cos(θ0), we solve for a self-consistent
distribution for cos(θ0), where 〈Sx〉 is defined as the
mean of the distribution. The average order parameter
〈cos2 θ0〉 is computed for various values of τ1 and θ and
compared with a threshold value of 0.1 in order to iden-
tify the phase boundary. The experimental and numer-
ical phase boundaries are asymmetric about θ = π. We
attribute this to the inherently asymmetric distribution

of the effective rotation angle, θi ≈ τ2
√

Ω2
y + (∆i + J̄i)2,

which causes the transition to occur earlier for positive
deviations θ − π.

While we assumed φi to be a classical variable in this
analysis, the interaction induced rotation angle is an op-

erator φ̂ that exhibits quantum fluctuations and leads
to non-trivial quantum dynamics. Under such dynam-
ics, spins get entangled, resulting in mixed state density
matrices. These effects cannot be ignored in the case of
long interaction times, effectively limiting the present de-
scription. We believe that the diminished range of θ in
the experimentally obtained phase diagram (Fig. 3b) is
related to this effect.

E. Derivation of Effective Hamiltonian for Z3

symmetry breaking phase

Using microwave driving resonant with two different
transitions (Fig. 4a), we realize dynamics involving all
three spin states and observe a robust 3T -periodic time-
crystalline order. The unitary matrix of the time evolu-
tion during the fundamental period T is given as

U3 = e−i
∑

i(σ
i
−1,0+σi

0,−1)θ/2e−i
∑

i(σ
i
+1,0+σi

0,+1)θ/2e−iH2τ ,

where σia,b ≡ |ms = a〉〈ms = b| for spin-i and H2 =
Hdis + Hint is the effective Hamiltonian of NV centers
for all three spin states including on-site disorder po-
tentials Hdis =

∑
i ∆+

i σ
i
+1,+1 + ∆−i σ

i
−1,−1 and dipolar
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interactions for spin-1 particles18

Hint =
∑
ij

Jij
r3
ij

[
−
σi+1,0σ

j
0,+1 + σi−1,0σ

j
0,−1 + h.c.

2

+ (σi+1,+1 − σi−1,−1)(σj+1,+1 − σj−1,−1)
]
. (5)

We note that this Hamiltonian is obtained in the ro-
tating frame under the secular approximation. The
Hamiltonian H2 conserves the total population in any
of the three spin states, Pa =

∑
i σ

i
aa with a ∈

{0,±1}. If each microwave pulse realizes a π-pulse
(θ = π), their combination results in a cyclic transi-
tion Rπ3 : |ms = +1〉 7→ −|ms = −1〉 7→ i|ms = 0〉 7→
|ms = +1〉, and the population P0 becomes periodic
over three periods. Under such evolution, the effec-
tive Hamiltonian over three periods is given by Dπ

3 =[
H2 + (Rπ3 )−1H2R

π
3 + (Rπ3 )−2H2(Rπ3 )2

]
/3, in which on-

site disorders average to zero, and the interactions are
modified to

Dπ
3 =

∑
ij

Jij
r3
ij

∑
a

σiaaσ
j
aa −

1

3

∑
a6=b

σiabσ
j
ba

 . (6)

The first term describes Ising-like interactions that shift
energy when any pair of spins are in the same state, and
the second term corresponds to spin-exchange interac-
tions that allow polarization transport. For small per-
turbations in the microwave pulse angle ε = θ − π, the
effective dynamics, to leading order, are governed by

Dπ+ε
3 ≈ Dπ

3 +
ε

3τ

∑
j

(
σj+1,0 + σj−1,0 + iσj+1,−1 + h.c.

)
,

which explicitly breaks the conservation laws for Pa.
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