Эффекты применения СВМ-генератора в

производстве металлов и полимеров.

В.Ф.Панов, А.Е.Бояршинов, А.В. Клюев, С.А.Курапов Пермский государственный национальный исследовательский университет, ООО «Сталь-59», г.Пермь, Россия

<u>panov@psu.ru</u>, <u>svm-perm@mail.ru</u>

<u>Svm-perm.ru</u>

СВМ-генератор (структурно-волновой магниторезонансный)

- В период с 1989 г. по 1991 г. в Институте проблем материаловедения АН Украины, был проведён цикл работ по изменению физико-химических свойств металлов при воздействии генератора, разработанного Акимовым А.Е., на расплавы металлов. Были получены однозначные результаты воздействия данного генератора на расплавы металлов в состоянии перегрева. Отметим, что в тот же период Г.И.Шиповым была предложена «Теория физического вакуума» [1].
- Нами, с 2002 по 2020г. в условиях действующего производства, были проведены исследования по обработке расплавов чёрных и цветных металлов и сплавов, используемых в машиностроении и авиастроении, генераторами на электромагнитной основе (СВМ-генераторами). Были получены результаты по изменению микро- и макроструктуры, что привело к существенному улучшению механических свойств металлов и сплавов [5]. В настоящей статье излагаются как старые, так и новые результаты в этой области.

Структурная схема СВМ-генератора

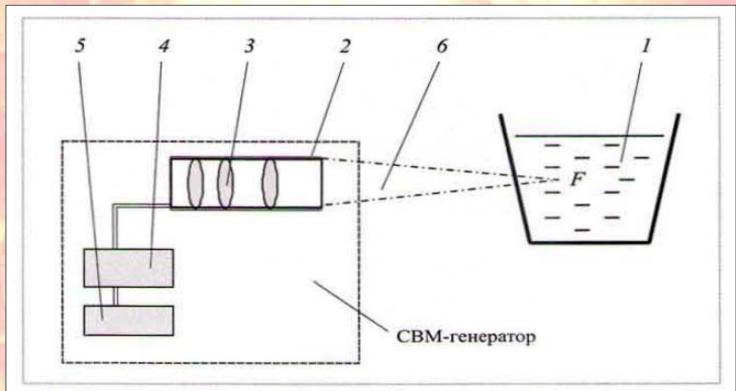


Рис. 1. Схема волновой обработки расплава:

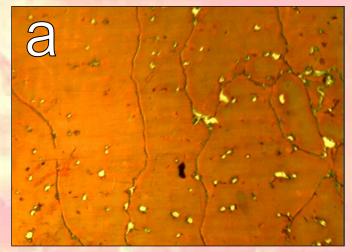
I — плавильная печь с металлом (ковш); 2 — направленный излучатель (волновой канал) СВМ-генератора; 3 — излучающий элемент; 4 — формирующий блок-модулятор с модификатором; 5 — блок питания; 6 — волновое излучение. Фокус F излучателя ориентирован внутрь объема расплава. Волновая обработка расплава проводится сквозь стенку металлургической печи

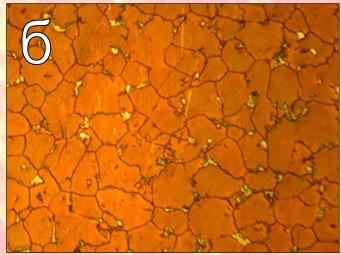
- Как было установлено, характер воздействия генератора на расплавы существенно зависит от материала вещества, помещаемого в резонансную камеру блока-модулятора, т.е. от вещества-модулятора, являющегося виртуальным, или пассивным, модификатором металла. В качестве модуляторов использовали традиционные для металлургии легирующие и модифицирующие материалы: никель, хром, магний, марганец, редкоземельные металлы и др. Модулятор служит фильтром, модулирующим спектр излучения генератора. Модификатор может использоваться в том числе для снижения необходимой концентрации традиционных легирующих и модифицирующих материалов (магний, марганец, редкоземельные металлы) без потери физических свойств конечного продукта.
- Примеры режимов установки для обработки черных металлов:
- <u>«Антиферритный» режим</u>. Низкоуглеродистые и среднеуглеродистые стали (содержание углерода < 0,8%), в том числе легированные использование комбинации стабилизирующих аустенит элементов: Mn Ni Cu Nb Данный режим уменьшает количество феррита в литом металле, разрывает сплошную ферритную сетку, уничтожает грануляционную структуру, уменьшает или полностью уничтожает видманштетт.
- «Антикарбидный» режим. Высокоуглеродистые стали и чугуны (содержание углерода ≥ 0,8%), в том числе легированные использование комбинации повышающих растворимость углерода в железе элементов: Mg Mn (Y La Ne Ce Sm –Sc) Данный режим повышает растворимость углерода в аустените, уменьшает количество карбидов в литом металле и разрывает сплошную карбидную сетку. Он также придаёт округлую форму оставшимся карбидам.
- <u>«Бейнитный» режим.</u> Жаропрочные высоколегированные стали и сплавы. Данный режим понижает критическую скорость охлаждения стали, повышает прокаливаемость низко и среднеуглеродистых сталей. Обработка расплава стали ведется двумя группами модификаторов. В первую половину времени плавки расплав обрабатывается по «антиферритному» режиму, с целью уменьшить количество феррита в литом металле. Во второй половине плавки используются модификаторы, состоящих из следующих хим. элементов: Cr W Mo B Co (Ce Y Ne).

Результаты, полученные при изменении микро- и макроструктуры и улучшении механических свойств металлов и сплавов

- Сокращение времени термообработки сталей.
- Снижения литейного брака.
- Уменьшение зерна с 1-2 баллов до 5-7 баллов.
- Управления в определённых пределах химической активностью элементов стали для получения заданных свойств конечного продукта.
- Уменьшения карбидной неоднородности высокоуглеродистых сталей.
- Уменьшение полосчатости при прокате, вплоть до полного исчезновения.
- Увеличение пластичности сталей при сохранении прочности.
- Увеличение прочности при сохранении пластичности сталей.
- Увеличение ударной вязкости при -70°С до 100%.
- Уменьшение неметаллических включений от 2 до 5 раз.
- Получения низколегированной стали 40ХМА со свойствами высоколегированной стали 34ХНЗМ.
- Увеличение прочности чугуна СЧ25 до уровня СЧ40.
- Увеличение жаропрочности сталей.
- Увеличение разгаростойкости стали 25Х2М1Ф.
- Увеличение коррозионной стойкости стали SAF2205 в 3 раза.
- Увеличение длительной прочности авиационных лопаток из сплава ЖС6У на 82%.
- Увеличение предела прочности на растяжение силумина АК12 в 2 раза.
- Получение свойств технического (нелегированного) титана на уровне легированного при термообработке.
- Увеличение прочности сплава ЭП678 на 28% при термообработке.
- Увеличение выхода проката стали 09Г2С 15 категории качества (-70°С) с 0% до 67%.

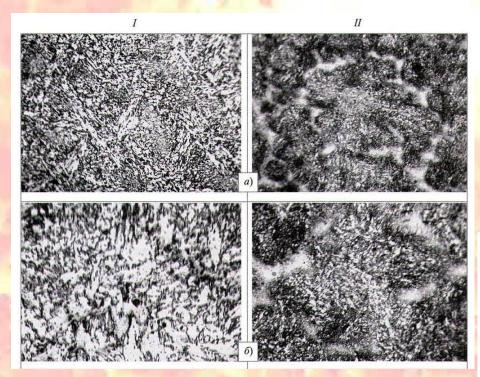
Инновационность технологии.

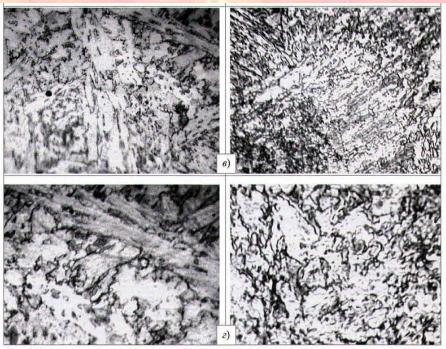

- Впервые в металлургии на промышленном производстве используется генератор на электромагнитной основе для облучения расплава металла, находящегося в промышленных печах ЭШП, ДСП и даже в индукционных печах, причем изменение свойств металла получается по всей глубине расплава, а не только на поверхности.
- Впервые в металлургии получены результаты, когда модификаторы не кладутся в расплав, а передаются свойства модификаторов резонансным способом, с помощью частот ЯМР металлов, при этом свойства металлов получаются лучше, чем при традиционном способе.
- Абсолютно идентичные результаты были получены при термообработке металлов в процессе закалки, что значительно расширяет возможности использования СВМ-генераторов.


Металл, обработанный СВМ-генератором,

сохраняет полученные свойства после нового переплава.

6. Примеры влияния волновой обработки на структуру и фазовый состав сталей и чугуна.


признаками СВМ-обработки Характерным является измельчение структуры (уменьшение величины зерна аустенита в среднем на 3-4 балла) и повышение ее однородности, в том числе равномерное распределение карбидов, что, как правило, ведет к повышению механических свойств минимум в 1,5 раза, а также к снижению анизотропии свойств. Результаты исследования позволяют утверждать о повышении пластических свойств стали при сохранении прочностных. У феррит - перлитных сталей наблюдаются изменения в фазовом составе в сторону увеличения количества перлита. Снижается химический градиент фаз, границы фаз становятся более размытыми. Наблюдается зависимость между микроструктуры измельчением И повышением механических свойств отливок (исключение составила сталь 110Г13Л), хотя отмечены и случаи повышения механических свойств после СВМ-обработки, без видимых изменений в структуре металла.


Микроструктура образцов стали 110Г13Л (х100)

- а) контрольный образец, аустенит, 0 1 балл
- б) после волновой обработки; наблюдается характерное измельчение размера зерна (4 5 балл), измельчение и более равномерное распределение карбидов

С помощью обработки CBM — полем, у стали 35ХГСЛ удавалось довести уровень механических свойств до стали 10ХНЗМДЛ, цена которой более чем в 7 раз выше, чем сталь 35ХГСЛ. Что дало бы экономию более 50 000 руб. на тонну при замене 10ХНЗМДЛ на 35ХГСЛ.

У стали 10ХН3МДЛ, обработанной с помощью CBM — генератора, удалось повысить показатель ударной вязкости как при +20°C так и при -50°C, более чем на 50%, при сохранении тех же прочностных характеристиках.

Рис. 5. Микроструктура образцов необработанной (I) и обработанной (II) стали 10ХНЗМДЛ при различном увеличении:

 $a - \times 517$; $\delta - \times 1300$; $\epsilon - \times 2200$; $\epsilon - \times 4200$


Микроструктура стали 20XГНМ после прокатки

Вверху - после СВМ-обработки (бейнит, отсутствие полосчатости)

Внизу - без СВМ-обработки (ферритоперлит явно выраженная полосчатость)

Образец с ОРП (бейнит) х125

Примеры изменения физических свойств металлов.

Материал	Параметр	Без СВМ	После СВМ
Сталь нелегированная	Точки AC1, AC3 на диаграмме Fe-C		Снижаются на 20-30 °C
Сталь легированная	Точки АС1, АС3 на диаграмме Fe-C		Снижаются на 30-50 °C
Сталь 40ХМА	Средний диаметр блока когерентного рассеяния, Å	998±96	580±18
Сталь 02Х22Н5АМ3	Стойкость к коррозии, мм/год	10,69	3,95
Сплав АМг6	Электрическая проводимость, ү МСм/м	10,72	13,05
Полипропилен	Температура плавления	156 °C	146 °C
	ПТР (показатель текучести расплава)	0,97 г/10 мин	>10r/1 c
Отработанное масло	Кислотное число, мгКОН/г	1,88	0,77

Примеры изменения механических свойств металлов.

Материал	Параметр	Без СВМ	После СВМ
Сталь 110Г13Л	Величина зерна, балл	0-3	3 - 4
	Ударная вязкость, Кси, кДж/м²	122	180
Сталь 10ХНЗМДЛ	Предел прочности, σ _{вр} , МПа	940	1040
	Относительное удлинение, δ, %	10	14
	Ударная вязкость, Кси, кДж/м²	383	686
Сталь 35Л	Предел прочности, ${f \sigma}_{_{ m BP}}$, МПа	560	1010
	Относительное удлинение, δ, %	21	13
	Ударная вязкость, Кси, кДж/м²	590	384
	Величина зерна, балл	3-7	7-9
Чугун СЧ25	Предел прочности, ${f \sigma}_{_{ m Bp}}$,	250	390
	Содержание неметаллических включений, %	0,0558	0,012
Сталь 20	Неметаллические включения, балл	3,5	1,5
Сталь 20ХГНМ	Неметаллические включения, балл	4,5	1,5
Сталь 02X22H5AM3	Неметаллические включения, балл	4,5	0,5

Материал	Параметр	Без СВМ	После СВМ
Сплав ЖС6У Авиационные лопатки Нагрузка 25 гс/мм ² T=975°C	Время выдержки под нагрузкой до разрушения, час	49,6 (42-55)	82,6 (51-131)
Силумин АК12(Fe)	Предел прочности, σ _{вр} , МПа	122	288
	Относительное удлинение, δ, %	3	3
	Твердость, HV	71.5	78
Сплав Д16	Предел прочности, $\sigma_{_{\rm Bp}}$, кг/мм 2	8,1	12,9
Сталь 40ХЛ	Предел прочности, σ _{вр} , МПа	500	900
	Относительное удлинение, δ, %	12	18
	Ударная вязкость, Кси +20°С, Дж/см ²	40	105
Сталь 09Г2С	Предел прочности, σ _{вр} , МПа	470	560
	Относительное удлинение, δ, %	21	32
	Ударная вязкость, Кси +20°С, Дж/см²	29	130
	Ударная вязкость, Кси -70°С, Дж/см²	29	120

Материал	Параметр	Без СВМ	После СВМ
Сталь 40ХМА	Предел прочности, σ _{вр} , МПа	740	880
	Относительное удлинение, δ, %	16	12
	Работа Удара, А -20°С, Дж	39	70
Сталь 17Г1С	Предел прочности, σ _{вр/} МПа	450	550
	Относительное удлинение, δ, %	17	29
	Ударная вязкость, Кси +20°С, Дж/см²	140	189
	Работа Удара, А -20°С, Дж	23	130
Сталь 9Х2МФ	Предел прочности, σ _{вр} , МПа	620	1033
	Относительное удлинение, δ, %	12	12
	Ударная вязкость, Кси +20°С, Дж/см²	8	36
	НВ	200	300
Сталь 25Х2М1Ф	Количество	1400	3000
Дорны для	прокатанных труб до	Забракованы	Забракованы по
изготовления	забраковки, Тонн	по сетке	износу
труб		разгара	поверхности, Сетки разгара нет

Мы предлагаем несколько основных направлений развития СВМ-технологии в металлургии

- 1. Повышение коррозионной стойкости сталей и сплавов
- 2. Повышение качества жаропрочных сталей и сплавов
- 3. Повышение хладостойкости сталей и сплавов (увеличение ударной вязкости при -70°C)
- 4. Экономия дорогостоящих редкоземельных легирующих элементов

Повышение коррозионной стойкости металлов

Материал	Без СВМ-обработки	После СВМ-обработки
Сталь 12Х18Н10Т	Наличие межкристаллитной коррозии	Отсутствие межкристаллитной коррозии
Сталь SAF2205 (02X22H5AM3)	Скорость питтинговой коррозии 10,69 мм/год	Скорость питтинговой коррозии 3,95 мм/год
Сталь 40ХМ	Средний диаметр блока когерентного рассеяния 998+-96 Å	Средний диаметр блока когерентного рассеяния 580+-18 Å

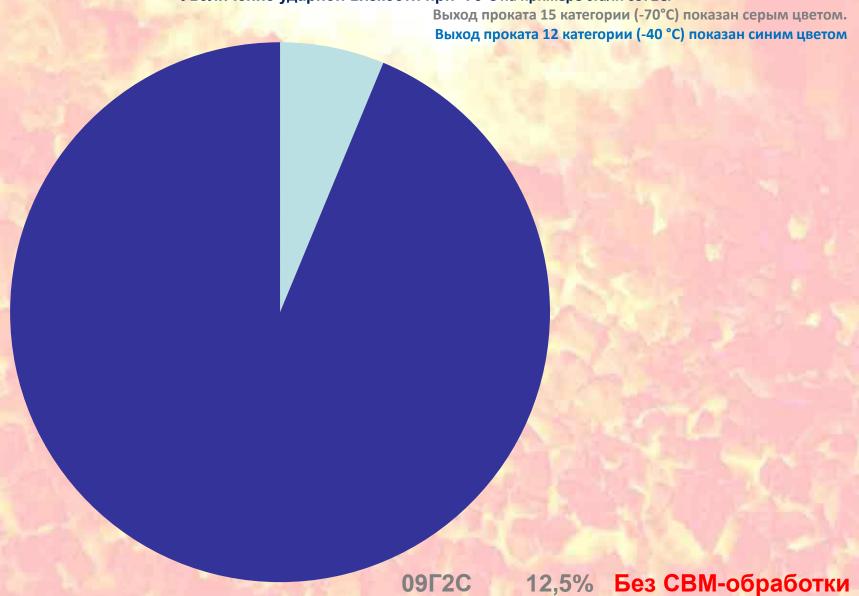
Повышение качества жаропрочных сталей и сплавов

Результаты испытаний образцов авиационных лопаток из сплава ЖС6У на длительную прочность.

5.2.1 Длительная прочность.

Результаты испытания образцов на длительную прочность представлены в таблице 2.

Таблица 2


Условный	Номер об-	Технические у тан		Время выдерж-	Примечание	
номер плавки	разца в плавке	Напряжение, кгс/мм ²	Т испыта- ния, °С	ки под нагруз- кой, час	примечание	
	1	25	975	42		
1	2	25	975	52	Без воздейст	
	3	25	975	55	вия	
				Средняя 49,6		
	1	25	975	69		
	2	25	975	47	Воздействие	
2	3	25	975	86	по режиму №	
				Средняя 67,3		
	1	25	975	66		
3	2	25	975	51	Воздействие	
3	3	25	975	131	по режиму №2	
				Средняя 82,6		
	1	25	975	48		
4	2	25	975	56	Воздействие	
	3	25	975	126	по режиму №3	
				Средняя 76,6		

Технический отчет № 541/15-4544

AMany_

Повышение хладостойкости сталей.

Увеличение ударной вязкости при -70°С на примере стали 09Г2С.

Увеличение ударной вязкости при -70°С на примере стали 09Г2С.

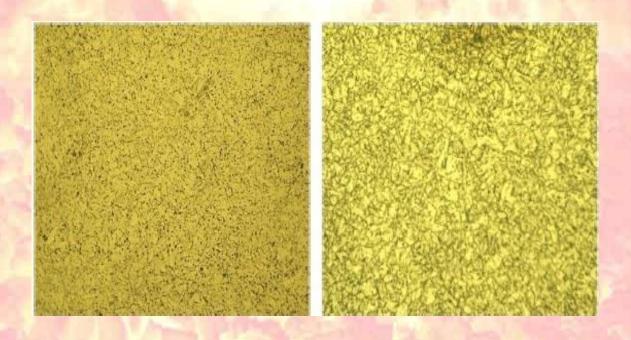
Выход проката 15 категории (-70°С) показан серым цветом. Выход проката 12 категории (-40°С) показан синим цветом

09Г2С 87,5% После СВМ-обработки

Показатели ударной вязкости проката 09Г2С при -70°С толщиной листа от 10мм и выше После СВМ-обработки

		KCU-70 °C ,	KCU-70 °C ,
Номер плавки	Толщина, мм	Дж/cm²	Дж/cm² (повтор)
		Норма >29	
2073	16	177	
		173	
		207	
		189	
2132	15	99	105
		59	84
		51	19,4
		20	58
2415	10	95	
		36	
		103	
		97	
2522	18	121	
		122	
		140	
		104	
2739	14	68	
		78	
		55	
		89	
2952	20	75	
		33	
		35	
Красным цветом — не соответсвие ГОСТу		20	

Показатели у	ударнои вязкости проката 09	Г2С при -70°С толщиной листа от <mark>обработки</mark>	10мм и выше
	Bes CBM-	КСU-70 °С ,	KCU-70 °C ,
Номер плавки	Толщина, мм	Дж/ст²	Дж/cm² (повтор)
		Норма >29	
790	16	29	27
		130	29
		22	45
		28	20
			49
			32
797	16	26	19
		20	49
		10	29
		26	31
			68
			29
			13
			17
797	20	29	5
		20	11
		52	8
		22	16
			12
			20
			20
			5
797	20	20	103
		11	29
		23	105
		14	11
Красным цветом – не соответсвие ГОСТу			180


Экономия на редкоземельных металлах

Валы из стали 45 диаметром до 750 мм с применением технологии CBM и исключением редкоземельных металлов:

- 1. Полностью соответствует требованиям SEW-550
- 2. Пластические характеристики выше средних значений на 6-12%
- 3. Все валы соответствуют требованиям заказчика SEP 1921 для ультразвукового контроля
- 4. Сокращение времени выдержки при рекристаллизации на 30%
- 5. Экономия на редкоземельных металлах

Применение СВМ-генератора при термообработке металлов.

Сталь типа 10ХГНМ

Микроструктура стали типа 10ХГНМ при увеличении ×500 до и после СВМ-обработки Участки точечного вытравливания (питтинга) в структуре стали до СВМ-обработки указывают на преимущественное выделение вредных примесей по границам зерен. Примеси после СВМ-обработки распределены более однородно и были выявлены как по границам, так и внутри зерен. Средний размер зерна стали до (6,47 мкм) и после (6,42 мкм) СВМ-обработки существенно не изменился.

На полученных из это	ой стали деталях были	измерены акустические	свойства.
	Частота F1, Гц	Частота F2, Гц	Разночастотность, ΔF, Гц
Без СВМ-обработки	7097,72	7097,36	0,36
	7094,25	7093,97	0,28
	7097,54	7097,36	0,18
	7077,22	7076,48	0,74
	7088,75	7087,47	1,28
	7099,65	7099,65	0
	7084,45	7084,36	0,09
	7088,57	7088,11	0,46
	7089,76	7089,39	0,37
После СВМ-обработки	7042,79	7042,7	0,09
	7043,43	7043,34	0,09
	7035,83	7035,74	0,09

		Титан	BT1-0		
Технический титан BT1-0, Ti - 99%	Предел прочности, $\sigma_{_{\! B}}$, МПА	Предел текучести, $\sigma_{0,2}$, МПА	Относит. удлинение, δ, %	Параметры СВМ- обработки	Соответствие
ВТ1-0, справочные данные	375	·	30		
Образец Т.003	406		31,6	без СВМ- обработки	Титан BT1-0
T.013.01	355	305	51	без СВМ- обработки	Титан BT1-0
T.013.02	350	300	49	без СВМ- обработки	Титан BT1-0
T.004	780		14	Ce, Co, Nd, Ti, V,	Титан 3М
T.005.01	890	850	0,4	Al, Mo, Ni, Ta	
T.005.02	900	870	0,4	Al, Mo, Ni, Ta	
T.009.01	520	390	7	Al, Mo, Ni	
T.010.01	510	430	7	Al, Mo, Ni, Zr	
T.010.02	520	430	6	Al, Mo, Ni, Zr	
T.012.01	840	620	15	Al, Cu, Mo, Ni*	Титан BT5
T.012.02	850	640	13	Al, Cu, Mo, Ni*	Титан ВТ5 Титан ВТ5 +
T.014.02	830	560	18	Al, Cu, Mo, Ni*	пласт. Титан ОТ4+ прочн.
T.015.01	850	690	11	Al, Be, Cu, Mo, Ni*	Титан ВТ20 - прочн.
T.015.02	840	690	9	Al, Be, Cu, Mo, Ni*	Титан ВТ20 - прочн.

- Стандартные заготовки листового титана BT1-0 подверглись закалке по схеме: нагрев до 1000°С (некоторые 900°С), выдержка 20 мин., закалка в воду.
- Образцы Т.004, Т.005, Т.009, Т.010, Т.012, Т.014, Т.015 во время выдержки при T=1000°C подверглись обработке СВМ-генератором с целью увеличения механических свойств с использованием различных модификаторов и частот ЯМР этих металлов.
- Образцы Т.003, Т.013 СВМ-обработке не подвергались и соответствуют марке ВТ1-0.

Получили:

- - Образец Т.004 по своим механическим характеристикам стал соответствовать марке 3М;
- - Образец Т.012 по своим механическим характеристикам стал соответствовать марке ВТ-5, но с улучшенной пластичностью на 30-50%;
- Образец Т.014 по своим механическим характеристикам стал соответствовать марке ВТ-5, но с улучшенной пластичностью на 80%, или марке ОТ4, но с улучшенной прочностью на 25%;
- - Образец Т.015 по своим механическим характеристикам немного не дотянул до свойств марки ВТ20 на 10%.

Сплав ЭП-678

Номер образца	Предел прочности бв, кгс/мм²	Предел текучести бт, кгс/мм²	Относительн. удлинение δ, %	Относитель н. сужение, Ψ, %	Закалка, °С	Старение, °С	
Контроль_1	126	121	14	65	950	520	Без СВМ Без СВМ
Контроль_2	122	118	14,5	67	950	520	Des editi
3	162	158	12	59	950	520	28,60%
4	161	158	12,5	58	950	520	27,80%
5	161	158	11,5	59	950	520	27,80%
6	162	158	12	58	950	520	28,60%

ПОЛИМЕРЫ

В течение 2017-2019 г.г. авторами были проведены:

- Эксперименты на полиэфирных смолах производства ОАО «Пермские полиэфиры», в результате которых было достигнуто увеличение физико-механических и физико-химических свойств на 7-25% по сравнению с российскими аналогами.
- Эксперименты по понижению температуры плавления полипропилена и повышению ПТР (показатель текучести расплава) полипропилена.

Результаты прилагаются.

Результаты исследования влияния электромагнитных полей на свойства полиэфирных смол производства "Пермские Полиэфиры"

- 1. Выбор параметров облучателя
- 1.1. Выбор модификатора

Исследования трех модификаторов: фторопласта, кварца, золота на параметры смолы K-15 BЭС показали:

	Теплостойкость, %	Хим. стойкость, %
Фторопласт	3,3	+23,5÷25,6
Кварц	6,7	+14,4÷24,6
Золото	3,2	+6,8÷10,8

Дальнейшие исследования проводились с использованием в качестве модификатора фторопласта Ф-4. При этом отмечено: продолжительное использование одного образца модификатора приводит к снижению характеристик смолы обработанной ЭМ полем.

- 1.2. Исследование влияния времени обработки смолы ЭМ полем показали: увеличение продолжительности обработки более 1 часа не приводит к дальнейшему изменению характеристик смолы.
- 2. Исследование влияния ЭМ поля на свойства эпоксивинилэфирной смолы K-15BЭС проводились путем сравнения характеристик образцов обработанной и необработанной магнитным полем смолы.
- 2.1. Химическая стойкость смолы после обработки ЭМ полем изменилась по отношению к необработанной смоле следующем образом:

2.2 Жизнеспособность обработанной электромагнитным полем смолы возросла по отношению к необработанной на 24,5%

Среда	Опыт №1, %	Опыт №2, %	Опыт №3, %
H2O	+25,6	+35	+38
NAOH (1%)	+25,4	+24	+31
H2SO4 (10%)	+23,5	+43	+33

- 2.3 Прочность обработанной электромагнитным полем смолы повысилось на 10-11%
- 2.4 Исследование структуры образцов обработанной и не обработанной электромагнитным полем с помощью показали повышение её плотности.
- 2.5 Изменений физико-механических характеристик образцов стеклопластика, изготовленных с использованием обработанной и необработанной электромагнитным полем смол не обнаружено.
- 2.6 Влияние технологических факторов на усадку смолы K-03K

Опыт	Коэффициент усадки	Процент изменения относительно «базы»
Без полистирола/ без ЭМП	7,46	_
С полистиролом / без ЭМП	6,89	7,64
Без полистирола с ЭМП	7,22	3,21
С полистиролом и с ЭМП	6,65	10,85

^{*}Все опыты проводились без модификатора

8. Результаты экспериментов по повышению ПТР полипропилена						
Νō	№ образца	Условия проведения измерений	Результат измерений			
1	П5 (контрольный)	T=154°C P=2.16 кг	ПТР=0,97 г/10 мин			
2	П11 (после СВМ-обработки с модификатором)	T=150°C	У образца невозможно измерить ПТР. Образец при данной температуре имеет слишком низкую вязкость			
3	П4 (после СВМ-обработки без модификатора)	T=152°C	У образца невозможно измерить ПТР. Образец при данной температуре является твёрдым телом.			
		T=159°C	У образца невозможно измерить ПТР. Образец при данной температуре является твёрдым телом			
		T=168°C	ПТР=5,4 г/10 мин			

ЗАКЛЮЧЕНИЕ:

Образец П11 при T=150°C находится в жидком состоянии, образец П4 при T=168°C имеет ПT=5,4г/10 мин, а образец П5 при T=154°C и P=2.16 кг имеет ПT=0,97г/10 мин

Исходя из результатов измерений можно сделать вывод, что контрольный образец П5 по ПТР существенно отличается от образцов П4 и П11. При этом образец П11 обладает самой высокой текучестью среди испытанных образцов.

При изготовлении образца П11 в качестве модификатора в генераторе CBM использовалось вещество КОМРРLEN M PP 5X

Измерение Т плавления полипропилена							
Nº	№ образца	Диапазон температуры плавления, °С	Средняя температура плавления единичного измерения, °C	Средняя температура плавления образца, °С			
1	П5 (контрольный)	149-155 152-168 155-162	152 160 158,5	156,8			
2	П11	145-147 144-146 147-149 145-148	146 145 148 146,5	146,4			
3	Π4	154-160 154-156 153-157	157 155 155	156,6			
4	Π7	152-157 153-155 154-156	154,5 154 155	154,5			

ЗАКЛЮЧЕНИЕ:

- 1. Большие интервалы температуры плавления образцов свидетельствуют о неоднородности их состава.
- 2. Температура плавления образца П11 существенно ниже и составляет 146,4°C

11. Мы предлагаем ряд гипотез, объясняющих действие нашего генератора на расплавы металлов.

- Воздействие электромагнитного потенциала генератора может приводить квантовым образом к поляризации спинов атомов расплава, что сказывается на характере кристаллической решётки твёрдого металла. Изменения в кристаллической решетке могут быть связаны с рассеянием спинполяризованных электронов в металле за счёт эффекта Ааронова-Бома [4], который обусловлен потенциалом электромагнитного поля нашего генератора. При этом меняется плотность вероятности распределения электронов в металле и квантовым образом меняется характер обменных сил, что в конечном итоге приводит к изменению образования структур дальнего порядка зародышей кристаллизации. На это можно сказать, что эффект Ааронова-Бома мал, но с другой стороны нам не известны работы по расчёту этого эффекта в металлах, а также, возможно, мы имеем дело с модификацией этого эффекта.
- Особого обоснования требует объяснение дистанционного воздействия в металлургии. Виртуальный перенос «информационных свойств металла—модификатора» на расплав требует специального рассмотрения. Для простейших квантовых систем проявляют себя квантовая нелокальность и квантовая запутанность. Видимо, в экспериментах на расплавах металлов (сложных системах) проявляет себя многочастичная квантовая запутанность (МКЗ). При этом действие СВМ-генератора следует описывать в рамках квантовой механики с учётом нелокальности и МКЗ. Информационная передача свойств металла-модификатора квантовым образом передаётся на расплав металла с учётом квантовой нелокальности. Этот вопрос требует более глубокого рассмотрения.

- Губаревым Е.А. [2] сформулированы уравнения электродинамики ориентируемой точки, основанной на принципе реальной относительности. В рамках предложенной теории предсказаны квазистатические свободные электромагнитные поля, имеющие неиндукционный характер и не возбуждающие никакой электродвижущей силы в плоскости, перпендикулярной направлению распространения. Такие квазистатические поля должны иметь высокую проникающую способность в проводниках, так как по своей структуре они не производят никакой работы над свободными зарядами и, следовательно, не рассеиваются в проводниках. Квазистатические поля могут оказать влияние квантовым образом на эффект кристаллизации расплава металла. С этой стороны интересно исследовать СВМ-генераторы в отношении проявления таких полей.
- В развиваемой группой Ю.С.Владимирова реляционной физике [3] среди первичных понятий в принципе нет места для полей—переносчиков взаимодействий. Это соответствует концепции дальнодействия, альтернативной теории поля. Ю.С.Владимиров развил и углубил теорию прямого межчастичного взаимодействия на основе реляционной концепции пространства-времени с использованием унарных и бинарных систем отношений.

- В рамках последовательного реляционного подхода в [3,4] делается следующий вывод: поскольку в реляционной парадигме нет самостоятельной категории «пространство-время», а вместо неё выступает совокупность отношений между материальными объектами (зарядами), а кроме того имеется «море» испущенного, но ещё не поглощённого электромагнитного излучения, то возникают веские основания выдвинуть идею, что испущенное, но не поглощённое электромагнитное излучение участвует в формировании самой идеи пространственно-временных отношений. Даже высказывается в [3] более сильное утверждение, что именно испущенное, но не поглощённое электромагнитное излучение ответственно за формирование классического пространства-времени.
- В классической электродинамике электромагнитное поле сильно затухает в расплаве металла, а в бинарной геометрофизике Ю.С.Владимирова с учётом прямого межчастичного взаимодействия и «моря» испущенного, но ещё не поглощённого электромагнитного излучения, возможно, электромагнитное излучение СВМ-генератора может существенно влиять на электроны в расплаве металла и существенно влиять на процесс кристаллизации расплава металла. Этот вопрос требует специального рассмотрения. Кроме этого, целесообразно проанализировать наши технологические эксперименты на расплавах металлов и полимеров в рамках реляционно-статистического подхода развития квантовой теории [3] с учётом принципа Маха.

Литература.

- 1. Шипов Г.И. Теория физического вакуума: Теория, эксперименты и технологии. 2-е изд. М.: Наука, 1996 г. 450 с.
- 2. Губарев Е.А. Принципы реальной относительности. М.: Фонд перспективных технологий и инноваций, 2020 г. 336 с.
- 3. Владимиров Ю.С. Метафизика и фундаментальная физика. Кн.3: Реляционные основания искомой парадигмы. М.: ЛЕНАНД, 2018 г. 256 с
- 4. Владимиров Ю.С. Реляционная теория пространства-времени и взаимодействий. Часть 2. Теория физических взаимодействий. М.: Изд. МГУ, 1998 г. 448 с.
- 5. Курапов С.А., Бояршинов А.Е., Клюев А.В., Кокарева Н.А., Панов В.Ф., Стрелков В.В. Структура и механические свойства металла после обработки расплава в нестационарном электромагнитном поле волнового излучателя. Металловедение и термическая обработка металлов. №7 (649), 2009 г. С. 3-9
- 6. Панов В.Ф., Курапов С.А., Бояршинов А.Е. Структура и механические свойства металла после обработки расплава электромагнитным излучателем.– Метафизика. Научный журнал. 2012 г, №2(4), стр.126-139.
- 7. Патент 2324575 РФ. Бояршинов А.Е., Клюев А.В., Кокарева Н.А., Курапов С.А., Панов В.Ф., Стрелков В.В. Способ обработки расплавленных материалов электромагнитными полями. Опубликовано 20.05.2008, Бюл. №14.
- 8. Патент 2336612 РФ. Бояршинов А.Е., Клюев А.В., Кокарева Н.А., Курапов С.А., Панов В.Ф., Стрелков В.В. Электромагнитная антенна. Опубликовано 20.10.2008, Бюл. №29.
- 9. Патент 2403126 РФ. Бояршинов А.Е., Клюев А.В., Кокарева Н.А., Курапов С.А., Панов В.Ф., Стрелков В.В. Способ обработки расплавленных сплавов электромагнитными полями и устройство для его осуществления. Опубликовано 10.11.2010, Бюл. №31.
- 10. Панов В.Ф., Клюев А.В., Курапов С.А., и др. Полевое глубинное воздействие на расплавы металла: Сб. статей по материалам Второй международной конференции «Деформация и разрушение материалов и наноматериалов». М.: ИМЕТ им. А.А.Байкова РАН, 2007. С. 144.
- 11. Клюев А.В., Курапов С.А., Панов В.Ф, Стрелков В.В., Кокарева Н.А., Бояршинов А.Е. Улучшение физико механических свойств чёрных и цветных металлов при обработке расплава в нестационарном электромагнитном поле волнового излучателя. // Тезисы докладов. Шестой международный аэрокосмический конгресс. IAC`09. (23 27 августа 2009г., Москва, Россия)/ Стр.108.
- 12. S.A. Kurapov, V.F. Panov, A.E. Boyarshinov, A.V. Klyuev, V.V. Strelkov, N.A. Kokareva. Structure and mechanical properties of metal after treatment of melt in nonstationary electromagnetic field of a wave generator. Metal Science and Heat Treatment. Vol. 51, Nos. 7 8, 2009. 0026-0673/09/0708-0319 © 2009 Springer Science + Business Media, Inc.
- 13. Бучаченко А. Л. Ядерно-спиновая селективность химических реакций. «Успехи химии», 1995, т. 64, стр. 863
- 14. А. Л. Бучаченко, Ю. Н. Молин, Р.3.Сагдеев, К. М. Салихов, Е. Л. Франкевич, Магнитно-спиновые эффекты в химических реакциях, «Успехи физических наук», т.151, № 1, 1987 сообщения с научной сессии Отделения общей физики и астрономии и Отделения ядерной физики Академии наук СССР 25-26.06.1986.

Список предприятий, на которых проводились исследования

- Металлургической отрасли:
- ОАО «Мотовилихинские заводы», г.Пермь
- ОАО «МК ОРМЕТО-ЮУМЗ», г.Орск
- ОАО «Тулачермет», г.Тула
- ОАО «Северский трубный завод», г.Полевской
- ОАО «Уралмаш», г.Екатеринбург
- ОАО НЛМК, г.Липецк
- ПЗЦМ, г.Пермь
- Арселор-Миттал, г. Кривой Рог, Украина
- Металлургический завод г.Конья, Турция
- На предприятиях ВПК:
- ОАО «Пермские моторы», г.Пермь
- ПАО ПНППК, г.Пермь
- АО ПЗ «Машиностроитель, г.Пермь
- ФГУП «Салют», г. Москва
- ЦКБ им.Илюшина, г.Москва
- ООО «НовосибНИАТ», г. Новосибирск
- В научно-исследовательских учреждениях:
- ЦНИИКМ «Прометей», г.С.-Петербург
- ЦНИИТМАШ, г.Москва
- ВИЛС, г.Москва
- ВИАМ, г.Москва
- Физико-технический институт УрО РАН, г.Ижевск
- Научный центр порошкового материаловедения, г.Пермь
- Уральский Государственный Лесотехнический университет, г.Екатеринбург
- ОАО «Пермские полиэфиры», г.Пермь

Авторы

Панов Вячеслав Федорович, Доктор физико-математических наук по теоретической физике, профессор ПГНИУ, преподаватель, член-корресподент Российской академии естествознания, член президиума Российского гравитационного общества.

panov@psu.ru, тел. +7 905 86 30 678

Бояршинов Андрей Евгеньевич, ООО «Сталь-59», Зам. директора svm-perm@mail.ru, тел. +7 982 49 33 887