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A novel theoretical estimate of the Casimir force of a metallic structure embedded into a cubic cavity 
is proposed. We demonstrate that by calculating the eigenmodes of the system we can determine the 
Casimir force which can be either attractive or repulsive by simply changing the geometry of the 
structures relative to the walls of the cavity. In this analysis, several cases of structures are taken into 
account from rectangular slabs to chiral “omega” particles, and the predicted data are consistent with 
recent literature. We demonstrate that the side walls of the studied cavity contribute decisively to the 
repulsive Casimir force between the system and the nearby top surface of the cavity. Finally, we have 
provided evidence that the medium embedded into the studied cavity (and especially its permittivity) can 
change the intensity of the Casimir force, while its repulsive nature once established (thanks to favorable 
geometrical features) remain quite robust. 

 
PACS number(s): 42.50.Ct, 12.20.-m, 78.20.Ek, 81.05.Xj. 
 

I. INTRODUCTION 

The Casimir force has been widely studied over the past years [1-4], giving emphasis to its practical 
applications [5-6]. According to H.B.G. Casimir, who discovered this force [7], two neutral perfectly 
conducting parallel surfaces in vacuum separated by a distance d attract each other by a force F due to the 

quantum fluctuations of the vacuum field [7-8]: 
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constant divided by 2π, and A is the area. The Casimir force becomes more pronounced if the dimension 
goes to nanoscale, leading to stiction and adhesion on the surface [2] which is a challenge for flexibly 
operating the micro/nano-electro-mechanical system devices (MEMs).  

Lifshitz’s extended theory [9] generalized the calculation of Casimir force between two parallel plates, 
1 and 2, characterized by frequency-dependent dielectric functions ε1(ω) and ε2(ω). The formula for the 
force or the interaction energy per unit area can be expressed in terms of the reflection amplitudes ab

jr  
(j=1, 2) [10] at the interface between the vacuum and the plate j, giving the ratio of the reflected 
electromagnetic wave of polarization a over the incoming wave of polarization b. Each a and b stands for 
either TM (or p) or TE (or s) polarized waves. The frequency integration is performed along the 
imaginary axis by setting ω=iξ. The interaction energy per unit area is given by: 
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where 2
1 2

oK dG I R R e−= − ⋅ , I is the unit matrix and 2 2
0 || 0 0K k ε μ ξ= + ; ε0 and μ0 are the permittivity and 

permeability of free space, and d is the distance between the two parallel plates. A negative slope of E(d) 
corresponds to a repulsive force, while a positive one corresponds to an attractive force. 

The calculation of the Casimir force was extended to other than planar geometries [1,12,13], because a 
unique property of this force is its strong dependence on the geometry of the interacting media, switching 
from attractive to repulsive; this makes the Casimir effect a likely candidate for applications in 
nanotechnologies and MEMs [11]. The attractive Casimir forces predicted to exist between electrically 
neutral bodies [11], while repulsive forces are predicted to exist inside of an empty sphere [1] and an 
empty rectangular cavity [12-13] with perfectly conducting walls. 

In this manuscript we study numerically the effect of the geometry of a metallic structure inside a 
metallic cavity on the attractive or repulsive character of the Casimir force. More explicitly, we introduce 
several metallic structures of various sizes and shapes inside a 3×3×3 μm3 metallic cavity and close to the 
top surface; then the basic approach employed is the calculation of the eigenmodes of the system in terms 
of which we determine the Casimir interaction and hence the force which can be either attractive or 
repulsive by simply changing the geometrical features of the structures. 

 

II. STRUCTURES UNDER INVESTIGATION 

The structures employed in the present study, shown in Fig. 1 (a-d), were placed inside a 3×3×3 μm3 
metallic cavity, close to its top surface [see Fig. 1(a)]; their geometrical parameters are detailed in the 
caption of Fig. 1. 

 
 

FIG. 1. (Color online) Schematic of the structures under investigation; w = 2.75 μm, H = 0.15 μm, L = 0.055-
1.375 μm, and a=0-1.125 μm, respectively. In Fig. 1(a) one can notice the 3×3×3 μm3 metallic cavity, in which each 
of the studied structures are embedded in, close to its top surface. 
 

As one can see in Fig. 1, apart from the square structures of Fig. 1(a) with L = 0.055-1.375 μm, three 
more structures embedded in metal cavities were studied [see Figs. 1(b), 1(c) and 1(d) for details]; a 
metallic ring of circular cross-section with diameter H=0.150 μm and outer diameter of w=2.75 μm [Fig. 
1(b)], a Split Ring Resonator (SRR) -like structure (loop) having the same geometrical dimensions as the 
ring in Fig. 1(b) and a gap of H=0.150 μm [Fig. 1(c)], and a chiral “omega” structure consisting of an 
open circular loop with exactly the same dimensions like the SRR structure of Fig. 1(c) and two short 
wires with a length a=1.0 μm, as seen in Fig. 1(d). 
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III. NUMERICAL SIMULATIONS, ESTIMATION OF THE CASIMIR FORCE 

For the numerical simulations we used the Eigenmode solver of a commercial three-dimensional full-
wave solver (CST Microwave Studio, Computer Simulation Technology GmbH, Darmstadt, Germany) 
based on the Finite Integration Technique. For each design we considered a single (3×3×3, μm3) 
calculation boundary box under vacuum, as shown in Fig. 1(a), with the tangential electric field being 
zero (Et=0) along x, y and z directions, acting like a perfectly metallic cavity, while all the metallic 
structures (yellow color in Fig. 1) were treated as perfect electric conductors (PEC), since the Eigenmode 
solver of the software mentioned above does not support lossy and/or dispersive metal materials.  

At this point it should be noted that Casimir force arises from the fluctuations of the electromagnetic 
field mainly in the region between the metallic surface (a), and from a van der Waals type of interaction 
due to electrostatic mutual polarization of the metallic materials (b). Τhe (a) part can equivalently be 
incorporated into (b) by including retardation effects [14]. The first contribution dominates at distances 
much larger than a characteristic absorption length 0 0/cλ ω≡  [14], where 0ω  is a frequency 

corresponding to a characteristic excitation energy 0ωh  in a metal, such as a plasma energy. The length 

0λ  physically is the one beyond which the usual electrostatic van der Waals interaction has to be 
corrected as to incorporate retardation effects [14]. The second contribution to the Casimir force 
mentioned above, prevails at much smaller distances [14], typically for 0λ  in the order of 30 nm [15]. As 
a result, our calculations, although we consider PEC structures and not realistic frequency dependent 
permittivity of the metallic structures and the walls of the cavity, are safe.  

Moreover, as in our case, there are several research groups [16-17] calculating Casimir force 
considering PEC structures into metallic cavities with PEC walls filled with non-dispersive media, 
indicating that the effect of loss and dispersion is quite mild and that the results obtained using the PEC 
assumption describe well the physics of the system. 

The structures under investigation were placed into the cavity described above, initially at a distance d 
of 100 nm from its top surface (check Fig. 2 for the case of the structure presented in Fig. 1(a) with L=150 
nm). Using the Eigenmode solver of CST software the first 500 Eigenmodes of the system (PEC structure 
into the cavity) were calculated. The energy of the system was calculated using the formula [11]: 
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where d denotes the distance between the center of the studied structure and the top surface of the cavity, 
and iω  denotes each of the 500 calculated Eigenmodes. Then, each of the PEC structures was moved 
along y- axis at a distance of 200 nm and 500 nm from the top surface of the boundary box respectively 
[see Fig. 1(a)], and the corresponding energies E200nm and E500nm were calculated. 

In order to estimate the Casimir force (F) along y- axis at a distance d=300 nm between the top surface 
of the cavity and the PEC structure, the following formula was used: 
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where Ed=500nm, Ed=200nm, and Ed=100nm are the calculated energies at distances of 500 nm, 200 nm, and 100 
nm, respectively. 
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FIG. 2. (Color online) 3×3×3 (μm3) boundary box acting as metallic cavity with the metallic structure (with 

L=0.150μm) embedded into it. The distance of the structure from the top surface of the boundary box is 100 nm (a), 
and 500 nm (b), respectively. A snapshot of the electric field distribution on the metallic structure embedded into the 
3×3×3 (μm3) boundary box is shown.  
 

As one can notice from Fig. 2, the contribution of the side walls of the metallic cavity is more intense 
than the one from the top (and of course the bottom) walls. Following the methodology described above, 
we have calculated the Casimir force of the structures presented in Fig. 1(a) for several values of L, 
keeping H constant and equal to 150 nm. We have repeated these calculations for H=50 nm and for 
H=300 nm, changing the geometry of Fig 1(a) from a rectangular loop with L=0.055 μm (L/H=0.367) to a 
square plate with L=1.375 μm (L/H=9.167). In Fig. 3 we present the Casimir force of the proposed 
structure of Fig. 1(a) along y- axis, as a function of the ratio L/H. 

 
FIG. 3. (Color online) Casimir force along y- axis at a distance d=300 nm between the top surface of the cavity 

and the proposed structure of Fig. 1(a) as a function of the ratio L/H. In the inset of Fig. 3 one can see a more 
detailed presentation of the Casimir force for L/H=0.25-2.5. 
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As seen from Fig. 3, there is a certain value of the ratio L/H=1.167 where the Casimir force along y- 
axis (at a distance of about d ≈ 225 nm between the top surface of the cavity and the PEC structure) equals 
to zero. Moreover, for 1.167<L/H≤9.167 negative Casimir force is obtained, indicating that the force is 
attractive, while for 1.167>L/H≥0.3667 positive Casimir force is achieved, demonstrating that the force is 
repulsive.  

At this point it is worth mentioning again that further numerical simulations have been performed (not 
shown here), for values of H other than 150 nm: H=50 nm and H=300 nm, respectively and changing the 
values of L. As in the case of H=150nm and L=0.055-1.375 μm (L/H=0.367-9.167), we found again using 
these other values of H that there is a region for L/H in which negative (attractive) Casimir force is 
obtained, while for a different region of L/H positive (repulsive) Casimir force is achieved and that the 
transition occurs for the same value of the ratio L/H. Thus, it was concluded that it is the ratio L/H which 
controls the sign of the Casimir force between the object and the top wall in the presence of side walls. 
This behavior is attributed to a competition between the interaction with the side walls, which is 
producing a repulsive force along the y-direction, and the interaction with the top wall, which produces an 
attractive force along the same direction. (The bottom wall is too far away to play any role). Obviously as 
L is increasing, the interaction with the top is enhanced and overcomes the repulsion. On the other hand, 
as the length H is increasing, the side walls-due repulsion is strengthened and wins over the attraction. 
Thus, it is the ratio L/H which controls the sign of the Casimir force between the object and the top wall 
in the presence of side walls. We think, on the basis of our results and those of Ambjørn and Wolfram 
[13], that in general the presence of a kind of surrounding side metals contribute a repulsive component to 
the Casimir force. 

Let us summarize the preceding arguments: Our assertion that the side walls contribute a repulsive 
component to the force along the y-direction, while the top wall an attractive one, is supported both by the 
obtained field distributions (Figs. 2 and 4) and the simulations showing  that (attractive 
component)/(repulsive component) is a monotonically decreasing function of the ratio L/H. 

According to Zhao et al. [18] the intensity of the repulsive Casimir force can be optimized by 
increasing the inductance of the structures. Indeed, the rectangular and the circular metallic rings of Fig. 
1(a) with L/H=1 and Fig. 1(b) respectively give almost the same repulsive Casimir forces; 275 fN and 
273.7 fN, respectively. When a gap is created into the metallic ring structure [see Fig. 1(c)] (and thus 
inductance is induced), the Casimir force is remaining repulsive, while its intensity is raised to 283.5 fN. 

Another important parameter for enhancing the repulsive Casimir force is the chiral properties of the 
structures [18-19]. As already stated [15,18], chiral metamaterials (CMMs) are candidates to realize the 
repulsive Casimir force, while the existence of a repulsive Casimir force depends upon the strength of the 
chirality. Indeed, the so-called “omega” particle [18,20] defined in Fig. 1(d) provided a repulsive Casimir 
force along y- axis with an intensity of ~ 315.1 fN, enhanced by ~11.2 % compared to the SRR structure 
presented in Fig. 1(c), exhibiting the highest repulsive Casimir force compared to all the structures 
studied in this work (see Figs. 1 for reference). 

Moreover, as already stated for the structures shown in Fig. 2, the contribution of the side walls of the 
metallic cavity is more intense than the one from the top wall (the interaction with the bottom wall is still 
quite small even in the case of omega particle shown in Fig.4, where the distance between the lower edge 
and the bottom is 0.75 μm). This is confirmed by the electric field distribution shown Fig. 4, where the 
upper edge of the “omega” particle is at a distance of 100 nm from the top surface of the cavity [the 
distance between the loop of the “omega” structure and the top surface of the cavity equals to 1.1 μm (0.1 
μm + a), and the distance of the lower edge from the bottom surface is 0.75 μm (3 - 2a - 0.15 μm - 0.1 
μm), where a is the length of the “omega’s” wires, taken to be equal to 1.0 μm, in Fig. 4]. 
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FIG. 4. (Color online) Electric field distribution on the “omega” particle embedded into the 3×3×3 (μm3) cavity 

at a distance of 100 nm between the upper edge of the wire and the top surface. 
 

The “omega” particle can be considered as a connection of two small wire antennas: a short electric 
dipole antenna of length 2a and a small loop antenna with radius 2.75/2 μm [21-23]. Since the length (a, 
in Fig. 5) of the wires of the “omega” particle enhances the chirality the structure, its effect on the 
Casimir force was further investigated. In Fig. 5 one can see the intensity of the Casimir force along y- 
axis (in fN) of the proposed “omega” particle embedded into a 3×3×3 (μm3) cavity, as a function of its 
wire’s length, a. For this type of calculations, the loop of the “omega” particle was placed at a symmetric 
position in the 3×3×3 (μm3) cavity, and several cases of wires were studied with length a=0.0-1.125 μm. 
Then, the “omega” particle was moved towards the top surface of the cavity by 100 nm and 500 nm, and 
the Casimir force was calculated using the formulas (2) and (3) mentioned above.  

 
FIG. 5. (Color online) Repulsive Casimir force of the proposed “omega” particle embedded into a 3×3×3 (μm3) 

cavity, as a function of its wire’s length, a. For this type of calculations, as opposed to the one shown in Fig.4, the 
loop of the “omega” particle was placed at a symmetric position in the 3×3×3 (μm3) cavity, and several cases of 
wires were studied with length a=0.0-1.125 μm. 

 
As expected, the shortening of the wires of the “omega” particle produces a less chiral structure [21], 

and thus the Casimir force is minimized (check Fig. 5). Moreover, as one can notice from Fig. 5, for 
a=0.5 μm, the repulsive Casimir force becomes maximum reaching a value of 320.5 fN, while for wires’ 
length 0.5≤a≤1.125 μm the Casimir force almost saturates, being from 320.5 fN to 305.48 fN, 
respectively. The minor drop observed beyond a=1 μm is due to the increased interaction with the bottom 
surface as a result of which a force pointing along the positive y-axis appears. 
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In order to verify the effect of the side walls of the cavity studied in this work, a new cavity (boundary 
box) was designed with dimensions of 30×30×30 μm3 (Et=0 along x-, y- and z- directions). A single 
“omega” particle (with dimensions as described in Fig. 5) was placed inside the 30×30×30 μm3 cavity at a 
distance of 100 nm between its upper edge and the top surface. The “omega” particle was displaced along 
y- axis (see Fig. 2) at a distance of 500 nm from the top surface of the cavity, and the Casimir force was 
calculated using the formulas (2) and (3) mentioned above, being practically zero (~7.7×10-5 fN). Indeed, 
the Casimir force is 6 orders of magnitude less than the one calculated for the 3×3×3 (μm3) cavity (315.1 
fN), reaching the limits of the computational method proposed within this work. This conclusion is also 
confirmed by the electric field distribution which shows that less intensities are recorded (not shown 
here). 

At this point it should be noted that the Casimir force along x- and z- axes were also calculated, 
following the procedure described above, by moving the proposed PEC structures inside the 3×3×3 μm3 
cavity along x- and z- direction, respectively [see Fig. 1(a)], and applying similar equations to (2) and (3). 
For instance, the Casimir Force of the “omega” particle presented in Fig. 1(d) and Fig. 4 along x- axis is 
remaining repulsive, upon moving the “omega” particle along x- axis, from 20 nm to 100 nm from the 
right side wall (see Fig. 4), with an intensity of ,60x nmF  ~16.84 fN, while the movement of the “omega” 
particle along x- axis, towards the left side wall (see Fig. 4), provides a similar repulsive Casimir force, 
with an intensity of '

,60x nmF  ~12.28 fN. Finally, the relocation of the “omega” particle along z- axis, from 
20 nm to 100 nm from the back (or front) side wall (see Fig. 4), produces a repulsive Casimir force along 
z- axis being ,60z nmF  ~12.14 fN (or '

,60z nmF  ~11.82 fN). It is more than clear that the Casimir force of the 
“omega” particle of Fig. 1(d) embedded into the 3×3×3 μm3 cavity along x- and z- axis is always 
repulsive and almost constant to 11.82-16.84 fN, no matter of the movement of the particle along x- or z- 
direction. Due to the symmetry of the “omega” particle, its movement along z- axis, either towards the 
front or the back side wall (see Fig. 4), does not produce different Casimir forces; ,60z nmF  ~12.14 fN (or 

'
,60z nmF  ~11.82 fN). On the other hand, the “omega” particle is not symmetric along the y-z- plane, and 

thus one may expect a different Casimir force when displacing the particle along x- axis towards the left 
or right side wall (see Fig. 4). Indeed, when the small wire antennas of the “omega” particle (which 
induce chirality to the structure) are closer to the right side wall, a more intense Casimir force is recorded 

,60x nmF  ~14.84 fN. Thus, we conclude that the Casimir force deployed between the “omega” particle and 
the 3×3×3 μm3 metallic cavity is more sensitive and intense along y- axis than the other directions (see 
Fig. 4). Moreover, under the geometrical parameters remaining within proper range of values, the Casimir 
Force is repulsive.  

In order to fully study the Casimir force of the proposed structures enclosed into the 3×3×3 μm3 
cavity, the medium of the cavity was assumed to be a liquid dielectric the permittivity of which changed 
from that of the vacuum to that of the water [24-26]. According to several research groups [24-26], the 
medium in which the metal structures are embedded in plays a significant role in the nature of the 
reported Casimir force (attractive or repulsive). Thus, we have investigated further the PEC “omega” 
particle presented in Fig. 1(d), studying the effect of several media (with various, ε, and permeability 
values, μ, respectively) into the 3×3×3 (μm3) cavity on the Casimir force between the top surface of the 
cavity and the structure. 

As already stated, the results presented in Figs. 3 and 5 refer to PEC structures placed into the 3×3×3 
(μm3) metallic cavities under vacuum (with ε=1 and μ=1). In Fig. 6 we present Casimir force for the 
“omega” particle presented in Fig. 1(d) embedded into the 3×3×3 (μm3) cavity filled with different 
dielectric liquids with several ε values varying from 1 (vacuum) to 78 (water), and μ=1. 

It is worth mentioning that as we increase the permittivity ε of the liquids within the cavity, from 1 to 
78 (keeping the permeability μ constant equal to 1), the Casimir force on the omega-particle remains 
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repulsive, while its intensity decreases from 315.1 fN (case of vacuum) to 6.14 fN (case of water; ε=78, 
μ=1). As it was shown in reference [14], the Casimir force is directly related with the van der Waals 
interaction incorporating retardation effects. The latter represent the fluctuation of the electromagnetic 
field. It follows that the Casimir force is due to retarded interactions between fluctuating charges 
developed on the walls of the cavity and those on the system. These fluctuating charges are screened very 
effectively by a dielectric constant intervening between the walls and the system. For two dipoles this 
screening is proportional to 2/1 ε . 

 

 
FIG. 6. (Color online) Repulsive Casimir force of the proposed “omega” particle embedded into a 3×3×3 (μm3) 

cavity, filled with various media, as a function of their permittivity, ε.  
 

On the other hand, if the cavities are filled with liquids with various values of μ from 1.7 to 4.02 (and ε 
being constant around ~32.7-34.82; case of methanol and nitrobenzene, respectively), the Casimir force is 
once more repulsive with an intensity of ~8.25 fN, indicating that the permeability of the liquids into the 
cavity is almost not affecting the Casimir force at all, in agreement with Lifshitz theory, where all 
magnetic properties of the involved media are neglected with the magnetic permeability set equal to 1 
[27]. 

 

 

IV. CONCLUSIONS AND COMMENTS 

In this work we have proposed a novel way of calculating the Casimir force of several metallic 
structures embedded in a cubic cavity by taking into account the Eigenmodes of the system. We have 
checked several designs (i.e. slabs, rings, loops and “omega” particles) and found out that repulsive 
Casimir force can be obtained by simply changing several geometrical features of the structures and 
mainly their distance from the side walls. We have also shown that the inductance and the chirality of the 
studied structures play a role. In addition, we have provided evidence that the medium embedded into the 
studied cavity (and especially its permittivity) can change the intensity of the Casimir force, while its 
repulsive nature once established (thanks to favorable geometrical features) remain quite robust. Finally, 
we want to comment on our limitation of assuming perfect metallic behavior as opposed to realistic 
frequency dependent permittivity of the metallic structures and the walls of the cavity. One can 
distinguish two physically distinct contributions to the Casimir force: One is due to the fluctuations of the 
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electromagnetic field mainly in the region between the metallic surfaces as envisioned originally by 
Casimir. The other is essentially a van der Waals type of interaction due to electrostatic mutual 
polarization of the metallic materials. It is well known [14] that the first contribution dominates at 
distances much larger than a characteristic absorption length 0 0/cλ ω≡  [14] and the second at distances 

much smaller than this length. Typical value for 0λ  is of the order of 30 nm [15]. Thus, since our 
calculations are for lengths considerably larger than this, we think that our conclusions are valid in spite 
of employing perfect metallic behavior. 
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