Основы теории анизотропного пространства (Fundamentals of the theory of anisotropic space)

Н.В. Купряев

(N.V. Kupryaev)

Russia, Samara, e-mail: <u>kuprjaev@front.ru</u>

Даны основы теории анизотропного пространства, основанной на модифицированном

преобразовании Лоренца $x' = \frac{x - Vt}{\sqrt{1 - V^2 / c^2}}, \quad y' = y, \quad z' = z, \quad t' = t\sqrt{1 - V^2 / c^2}, \quad также$ удовлетворяющем экспериментам Майкельсона-Морли и электродинамике Максвелла, но без

постулирования инвариантности скорости света. Модифицированное преобразование Лоренца в

отличие от преобразования Лоренца $x' = \frac{x - Vt}{\sqrt{1 - V^2 / c^2}}, \quad y' = y, \quad z' = z, \quad t' = \frac{t - Vx / c^2}{\sqrt{1 - V^2 / c^2}}$ не

приводит к каким-либо парадоксам и противоречиям и в соответствии с принципом соответствия при V << c плавно переходит в классическое преобразование Галилея x' = x - Vt, y' = y, z' = z, t' = t и позволяет объяснить явления анизотропного характера. Возможна экспериментальная проверка теории.

(Fundamentals of the theory of the anisotropic space based on modified Lorentz transformations $x' = \frac{x - Vt}{\sqrt{1 - V^2 / c^2}}$, y' = y, z' = z, $t' = t\sqrt{1 - V^2 / c^2}$ are given. These new transformations explain

Michelson-Morley's experiments and Maxwell's electrodynamics, but without postulation of invariance of velocity of light. Lorentz's modified transformations in contrast to Lorentz's transformations

 $x' = \frac{x - Vt}{\sqrt{1 - V^2/c^2}}, \quad y' = y, \quad z' = z, \quad t' = \frac{t - Vx/c^2}{\sqrt{1 - V^2/c^2}}$ does not lead to any paradoxes and contradictions.

They transform to classical Galilee's transformations x' = x - Vt, y' = y, z' = z, t' = t at $V \ll c$. The proposed transformations allow explaining the anisotropic phenomena. Some experiments are proposed to check this theory.)

Оглавление

Введение

Глава 1. Кинематика

- 1.1. Преобразование координат и времени
- 1.2. Преобразование скорости
- 1.3. Преобразование ускорения
- 1.4. Интервал
- 1.5. Собственное время
- 1.6. Собственная длина. Сокращение размера движущегося тела. Одновременность событий
- 1.7. 4-вектор события и 4-вектор скорости
- 1.8. Преобразование координат и времени при переходе от одной инерциальной системы отсчета к другой.

Глава 2. Динамика

2.1. Функция Лагранжа для свободной частицы. Собственная масса

2.2. Энергия и импульс свободной частицы. Преобразование энергии, импульса и силы. Собственная энергия

2.3. Связь между энергией, импульсом и скоростью свободной частицы. 4-вектор импульса. Функция Гамильтона

- 2.4. Связь между кинетической энергией и скоростью свободной частицы
- 2.5. Уравнение движения частицы

Глава 3. Электричество

3.1. Закон Кулона. Собственный электрический заряд

3.2. Электрическое (магнитное) поле движущегося в системе отсчета *S* электрического заряда. Частное преобразование электрического поля

3.3. Электрическое поле движущегося в системе отсчета S' электрического заряда. Общее преобразование электрического поля

3.4. Магнитное (электрическое) поле движущегося в системе отсчета S' электрического заряда.

Преобразование магнитного (электрического) поля

3.5. Косвенные доказательства существования электрического поля вокруг проводника с электрическим током

- 3.6. 4-вектор потенциал. Преобразование потенциала. Потенциал Льенара-Вихерта
- 3.7. Функция Лагранжа для электрического заряда в электромагнитном поле
- 3.8. Уравнение движения электрического заряда в электромагнитном поле

Глава 4. Оптика

4.1. Идентичность явления дифракции и интерференции света в теории анизотропного пространства и в СТО

4.2. Идентичность явления отражения света в теории анизотропного пространства и в СТО

4.3. Скорость света в среде. Идентичность явления преломления света в теории анизотропного пространства и в СТО

4.4. Частичное увлечение света движущейся средой. Формула Френеля

- 4.5. Эффект Доплера. Связь между длиной волны, частотой и скоростью света
- 4.6. Эффект Саньяка

Глава 5. Элементы квантовой механики

- 5.1. Волновые свойства частиц. Волна де Бройля
- 5.2. Эффект Комптона

Глава 6. Гравитация

- 6.1. Вводные замечания
- 6.2. Закон тяготения Ньютона. Собственный гравитационный заряд

6.3. Гравитационное (роторное) поле движущегося в системе отсчета *S* гравитационного заряда. Частное преобразование гравитационного поля

6.4. Гравитационное поле движущегося в системе отсчета S' гравитационного заряда. Общее преобразование гравитационного поля

6.5. Роторное (гравитационное) поле движущегося в системе отсчета S' гравитационного заряда. Преобразование роторного (гравитационного) поля

- 6.6. 4-вектор потенциал. Преобразование потенциала. Потенциал Льенара-Вихерта
- 6.7. Функция Лагранжа для гравитационного заряда в гравитационном поле
- 6.8. Уравнение движения гравитационного заряда в гравитационном поле
- 6.9. Уравнение движения спутника в гравитационном поле Земли

Литература

Введение

Абсолютное "упругое" пространство (эфир), в современном представлении физический вакуум, уходит историческими корнями в классическую электродинамику Максвелла. После опытов Эрстеда в 1819-1820 гг., посвященных исследованию природы магнетизма, Ампером, Фарадеем и др. были открыты основные законы магнитного действия электрических токов, которые были положены в основу классической теории электромагнетизма. В 1864 году теория благодаря усилиям Максвелла обрела строгую математическую формулировку. Для Фарадея и Максвелла было бесспорно, что возбуждение электрического и магнитного полей сводится к "упругой деформации" абсолютного пространства.

Однако вскоре было обнаружено, что при переходе в другую инерциальную систему отсчета S', движущуюся с постоянной скоростью V относительно абсолютного пространства (абсолютной системы отсчета S) вдоль положительной оси x, уравнения Максвелла не сохраняют свой вид, если воспользоваться классическим преобразованием Галилея (предполагается, что начальный отсчет координатных систем S и S' совпадает)

$$x' = x - \frac{V}{c}ct, \quad y' = y, \quad z' = z, \quad t' = t \quad (ct' = ct).$$
 (1.1)

Преобразование Галилея, как известно, связывает координаты (x', y', z', t') события в движущейся системе отсчета S' с координатами (x, y, z, t) события в покоящейся системе отсчета S. Кроме того, в экспериментах Майкельсона-Морли по исследованию так называемого "эфирного ветра", также предсказываемого в соответствии с классическим законом сложения скоростей, также все еще не удавалось зарегистрировать хоть какоенибудь заметное смещение интерференционных полос.

Это, в конечном счете, побудило Лоренца в 1892 году сделать предположение, что все материальные тела, перемещающиеся со скоростью V сквозь абсолютное пространство, испытывают в направлении движения физическое продольное сокращение в

 $\gamma = 1/\sqrt{1 - V^2/c^2}$ раз, что все предсказываемые классической физикой эффекты взаимно компенсируются. (Та же самая идея была высказана Фицджеральдом и, вероятно, Фохтом.)

В результате в 1904 году Лоренцем было получено преобразование

$$x' = \frac{x - \frac{V}{c}ct}{\sqrt{1 - \frac{V^2}{c^2}}}, \quad y' = y, \quad z' = z, \quad ct' = \frac{ct - \frac{V}{c}x}{\sqrt{1 - \frac{V^2}{c^2}}},$$

полностью удовлетворяющее экспериментам Майкельсона-Морли и электродинамике Максвелла, но ценой постулирования инвариантности скорости света c' = c, что порождало большое количество парадоксов и противоречий и противоречило гипотезе существования абсолютного пространства. Обратное преобразование Лоренца

$$x = \frac{x' + \frac{V}{c}ct'}{\sqrt{1 - \frac{V^2}{c^2}}}, \quad y = y', \quad z = z', \quad ct = \frac{ct' + \frac{V}{c}x'}{\sqrt{1 - \frac{V^2}{c^2}}}$$

имело абсолютно симметричный вид, что делало системы отсчета S и S' абсолютно неразличимыми, что, по-видимому, не свойственному окружающему миру.

Существует огромное число экспериментов (см., например, [1]) указывающих на существование в системе отсчета земного наблюдателя выделенного направления в пространстве, совпадающего с направлением движения Земли относительно микроволнового фонового излучения (МФИ) Вселенной. Такое поразительное совпадение вряд ли случайно.

Так, например, в работе [2] на основании данных измерений потока нейтронов вблизи поверхности Земли (1994÷1997 гг.), полученных одновременно в двух направлениях (от поверхности и к поверхности Земли), было установлено, что направление потока нейтронов вблизи земной поверхности периодически меняется: в зимнее время поток направлен к поверхности, в летнее – от поверхности Земли.

Аналогичные явления, как известно, наблюдал и С.Э. Шноль, который вот уже на протяжении полувека изучает подобные явления для самых разнообразных процессов, начиная от химических процессов и кончая атомными и ядерными процессами [3]. Эффект, обнаруженный Шнолем, состоит в периодическом изменении с периодами 24 часа, 27 суток и около 365 суток тонкой структуры гистограмм измеряемых физических величин. Наличие строгой периодичности в изменении структуры гистограмм С.Э. Шноль связывает с существованием внешней по отношению к изучаемому объекту природы этого агента.

Подобные явления, как известно, наблюдал и Ю.А. Бауров [4,5]. Эффект, обнаруженный Ю.А. Бауровым, состоит в том, что пробное тело, будучи в апертуре соленоида с электрическим током вблизи обмотки, отталкивается от той части обмотки, где скорость электронов имеет существенную компоненту, направленную в выделенном направлении в пространстве, совпадающем в пределах ошибок измерений с направлением анизотропии поля МФИ. Анизотропия поля МФИ, как известно (см., например, [6]), объясняется влиянием движения (со скоростью около 400 км/с) Земли относительно поля МФИ Вселенной, направленным к созвездию Льва, хотя, например, В.С. Троицкий (см. [7]) предлагает считать это движение, происходящим в противоположную сторону.

Обнаружено также систематическое отклонение направления плоскости поляризации радиоизлучения удаленных источников (галактик) от их видимых позиционных углов, так называемый эффект Берча (см., например, [8]). Самое неожиданное здесь (см. [9]) – наличие корреляции между направлением на галактику и величиной дополнительного вращения плоскости поляризации, полученной после вычета величины обычного фарадеевского вращения. Выделенная ось не более чем на 30° (и эта величина близка к статистической погрешности результата) отклоняется от направления анизотропии поля МФИ.

Кроме того, в "Вестнике РАН" за 2003 год [10] был опубликован доклад В.М. Лобашева, доложенный на президиуме АН, о наблюдении так называемой аномальной структуры в спектре ^β -распада трития. На протяжении нескольких лет ими было прослежено положение так называемой ступеньки – разницы между теоретическими и экспериментальными спектрами ^β -распада трития – относительно конца спектра в зависимости от сезонного времени измерений. Оказалось, что в большей части измерений положение этих ступенек хорошо (с точностью 0,5 %) соответствует синусоиде с периодом полгода. Дальнейшие измерения показали, что к полугодовому периоду примешивается годичный.

Все эти эксперименты, таким образом, так или иначе, свидетельствуют в пользу существования в системе отсчета земного наблюдателя некоторого выделенного направления в пространстве, совпадающего с направлением движения Земли в пространстве, а это, как известно, противоречит принципу относительности.

Более того, оказывается, весьма серьезные претензии можно высказать и в отношении

5

преобразования Лоренца. Кроме того, что оно приводит к многочисленным парадоксам и противоречиям, оно (см., например, [11]) не удовлетворяет фундаментальному принципу физики – принципу соответствия, согласно которому всякая новая физическая теория должна содержать предыдущую как предельный случай и описывать как новые, так и старые факты и переходить при $V \ll c$ в классическую теорию. Однако легко видеть, что релятивистское преобразование Лоренца этому требованию не удовлетворяет и при $V \ll c$ переходит не в классическое преобразование Галилея, а в преобразование

$$x' \approx x - \frac{V}{c}ct$$
, $y' = y$, $z' = z$, $ct' \approx ct - \frac{V}{c}x$,

содержащее (в преобразовании времени) член первого порядка малости по $\frac{V}{c}$. В этом

можно убедиться, если преобразование Лоренца разложить в ряд по степеням $\frac{V}{c}$ и

ограничиться членом первого порядка малости по $\frac{V}{c}$:

$$x' = x - \frac{V}{c}ct + \frac{1}{2}\frac{V^2}{c^2}x - \dots, \quad y' = y, \quad z' = z, \quad ct' = ct - \frac{V}{c}x + \frac{1}{2}\frac{V^2}{c^2}ct - \dots$$

Если преобразование времени и должно отличаться от классического преобразования

времени, оно не должно содержать член первого порядка малости по $\frac{V}{c}$, с тем, чтобы не входить в противоречие с принципом соответствия. Этому принципу, как мы увидим дальше, удовлетворяет модифицированное преобразование Лоренца, рассмотренное автором в работе [12], также удовлетворяющее экспериментам Майкельсона-Морли и электродинамике Максвелла, но без постулирования инвариантности скорости света.

Однако некоторые физики возражают и говорят, что условие $\frac{V}{c} << 1$ означает не

V << c, а $c \rightarrow \infty$ и потому $t' \approx t$ $(ct' \approx ct)$. Однако, условие $c \rightarrow \infty$, во-первых, лишено физического смысла (c - это константа и не может ни уменьшена, ни увеличена), вовторых, зависит от системы единиц и, наконец, противоречит экспериментальной физике. Действительно, еще до становления классической физики (т.е. еще до периода 1687÷1905 гг.) было установлено, что скорость света в вакууме ограничена. Так, например, в 1676 году О. Ремером в результате наблюдений затмений спутников Юпитера был сделан вывод о конечности скорости распространения света в пространстве, и по данным наблюдений впервые было определено ее приблизительное значение 214000 км/с. В 1849 году, т.е. еще во время становления классической физики, Физо была измерена скорость света в земных условиях, и было получено значение 313274.3 км/с. Позже в 1878 году Майкельсоном были проведены более точные эксперименты по измерению скорости света, и было получено значение 299910±50 км/с.

Таким образом, начиная, по крайне мере, с 1676 года условие $c \to \infty$ не имеет никакого физического смысла и преобразование Галилея (1.1) нужно понимать как преобразование предельного вида $V \ll c$, а не $c \to \infty$. Единственной целью условия $c \to \infty$, выдвигаемого релятивистами для перехода от релятивистской физике к классической, лишенного, таким образом, физического смысла является, по-видимому, лишь желание оправдать релятивистское преобразование Лоренца, так как при $V \ll c$ релятивистское преобразование Лоренца теряет физический смысл.

Но, однако, в 1905 году после завершения создания Эйнштейном специальной теории относительности (СТО), а также независимо от него Пуанкаре, гипотеза инвариантности скорости света c' = c все же была включена в теорию как фундаментальная аксиома, и введение абсолютного пространства стало излишним, так как в предлагаемой им теории не вводилось наделенное особыми свойствами абсолютно неподвижное пространство.

Однако, как было показано автором этих строк в работе [12], релятивистское преобразование Лоренца применительно к электромагнитной волне, испущенной из начала координат S(S') в момент времени t = t' = 0, допускает в так называемом четырехмерном пространстве-времени Минковского обобщение, в котором в качестве четвертой координаты пространства-времени может рассматриваться не время t', а произведение двух неизвестных величин c' и t':

7

$$c't' = \frac{ct - \frac{V}{c}x}{\sqrt{1 - \frac{V^2}{c^2}}}.$$

Это уравнение в общем случае может иметь бесконечное множество решений, включая решение (нефизическое), полученное Лоренцем в 1904 году в предположении c' = c.

Однако, как было показано автором в работе [12], одним из возможных решений этого уравнения, удовлетворяющим принципу соответствия, может являться

$$t' = t\sqrt{1 - \frac{V^2}{c^2}}, \quad c' = \frac{c - \frac{V}{c}\frac{x}{t}}{1 - \frac{V^2}{c^2}}$$

(позже независимым образом к таким же результатам пришли авторы [13]), которое также удовлетворяет экспериментам Майкельсона-Морли и электродинамике Максвелла, но без постулирования инвариантности скорости света. Это решение и было положено автором этой статьи в основу предлагаемой теории анизотропного пространства.

Глава 1. Кинематика

1.1. Преобразование координат и времени

Итак, в основе предлагаемой теории анизотропного пространства лежит гипотеза существования абсолютного "упругого" изотропного пространства (эфира), в современном представлении физического вакуума, не увлекаемого движущимися телами и являющегося фундаментальным фоном, на котором разворачивается динамика природных объектов. Согласно современным представлениям абсолютное «упругое» пространство, состоящее, по-видимому, из виртуальных электронно-позитронных пар, имеет температуру около 2.7° К, чему соответствует равновесное тепловое электромагнитное излучение абсолютно черного тела с максимумом на длине волны около 1 мм.

Спектр этого излучения, представляющего собой, вероятно, "колебание" виртуальных электронно-позитронных пар физического вакуума и распространяющегося в вакууме со скоростью света C , обрывается, по-видимому, на длине волны около 1 нм, чему соответствует энергия диссоциации вакуума (работе выхода электрона из вакуума).

Остальная часть энергии, приходящаяся на коротковолновую область приходится, повидимому, на вещество Вселенной. Известно (см., например, [14]), что средняя плотность равновесного теплового излучения Вселенной равна средней плотностьи излучения звезд.

Скорость движения вещества, очевидно, ограничивается скоростью света ^{*c*}. Например, как найдено из измерения анизотропии микроволнового фонового излучения Вселенной, для Земли эта скорость составляет всего лишь около 400 км/с, что существенно меньше скорости света ^{*c*}. Земля при этом практически не испытывает сопротивление, так как наличие у вакуума температуры около 2.7° К не приводит (см., например, [15]) к какому-либо существенному сопротивлению со стороны вакуума.

В соответствии с гипотезой Лоренца материальное тело, движущееся со скоростью V относительно физического вакуума (абсолютного пространства), должно испытывать лоренцево продольное сокращение в γ раз. Соответственно, время в движущемся теле также должно быть замедлено в то же число раз. Координаты события (x, y, z, t) и (x', y', z', t') в системах отсчета S, покоящейся относительно физического вакуума, и S', движущейся относительно физического вакуума, и S', положительной оси x, должны быть связаны, по-видимому, преобразованиями [12,13]¹

$$x' = \frac{x - \frac{V}{c}ct}{\sqrt{1 - \frac{V^2}{c^2}}}, \quad y' = y, \quad z' = z, \quad t' = t\sqrt{1 - \frac{V^2}{c^2}} \quad \left(ct' = ct\sqrt{1 - \frac{V^2}{c^2}}\right)$$
(1.2)

И

$$x = \left(x' + \frac{V'}{c}ct'\right)\sqrt{1 - \frac{V^2}{c^2}}, \quad y = y', \quad z = z', \quad t = \frac{t'}{\sqrt{1 - \frac{V^2}{c^2}}} \quad \left(ct = \frac{ct'}{\sqrt{1 - \frac{V^2}{c^2}}}\right), \quad (1.3)$$

где $V' = \gamma^2 V$ – скорость системы отсчета *S*, измеренная относительно системы отсчета *S'*. Эта скорость направлена вдоль отрицательной оси x'. Так как абсолютное пространство предполагается изотропным (отсутствует выделенное направление), то преобразования

¹ После того как эта статья была написана и отправлена в редакцию, автор узнал, что такие же преобразования были получены Тангерлини в 1958 году в его диссертации (см. Малыкин Г Б *УФН* **179** 285 (2009)) – примечание автора.

(1.2) и (1.3) должны быть справедливы при любой ориентации оси *x*.

Преобразование (1.2) в отличие от преобразования Лоренца, как легко видеть (см. также [11]), полностью удовлетворяет принципу соответствия и при *V* << *c*, как и положено, плавно переходит в классическое преобразование Галилея (1.1), в чем легко

убедиться, если преобразование (1.2) разложить в ряд по степеням $\frac{V}{c}$ и ограничиться

членом первого порядка малости по $\frac{V}{c}$:

$$x' = x - \frac{V}{c}ct + \frac{1}{2}\frac{V^2}{c^2}x - \dots, \quad y' = y, \quad z' = z, \quad t' = t - \frac{1}{2}\frac{V^2}{c^2}t - \frac{1}{8}\frac{V^4}{c^4}t - \dots.$$

Модули радиус-векторов r и r' событий в системах отсчета S и S', очевидно, связаны преобразованиями

$$r' = \frac{\sqrt{(r - Vt)^2 - r^2 \frac{V^2}{c^2} \sin^2 \theta}}{\sqrt{1 - \frac{V^2}{c^2}}}$$
(1.4)

И

$$r = \sqrt{(r' + V't')^2 - \frac{V^2}{c^2} (r'\cos\theta' + V't')^2}, \qquad (1.5)$$

а углы θ и θ' между векторами *r* и *r'* и положительными осями *x* и *x'* (вектором *V*)

$$\cos\theta' = \frac{r\cos\theta - Vt}{\sqrt{(r - Vt)^2 - r^2 \frac{V^2}{c^2}\sin^2\theta}}$$
(1.6)

И

$$\cos\theta = \frac{r'\cos\theta' + V't'}{\sqrt{(r' + V't')^2 - \frac{V^2}{c^2}(r'\cos\theta' + V't')^2}} \sqrt{1 - \frac{V^2}{c^2}}.$$
(1.7)

1.2. Преобразование скорости

Продифференцировав преобразования (1.2) и (1.3) по времени получаем, очевидно, преобразование скорости

$$v'_{x} = \frac{v_{x} - V}{1 - \frac{V^{2}}{c^{2}}}, \quad v'_{y} = \frac{v_{y}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad v'_{z} = \frac{v_{z}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}$$
(1.8)

И

$$v_x = (v'_x + V') \left(1 - \frac{V^2}{c^2}\right), \quad v_y = v'_y \sqrt{1 - \frac{V^2}{c^2}}, \quad v_z = v'_z \sqrt{1 - \frac{V^2}{c^2}}.$$
 (1.9)

Модули векторов v и v' в системах отсчета S и S', очевидно, связаны преобразованиями

$$v' = \frac{\sqrt{(v - V)^2 - v^2 \frac{V^2}{c^2} \sin^2 \theta}}{1 - \frac{V^2}{c^2}}$$
(1.10)

И

$$v = \sqrt{\left(v' + V'\right)^2 - \frac{V^2}{c^2} \left(v' \cos \theta' + V'\right)^2} \sqrt{1 - \frac{V^2}{c^2}}, \qquad (1.11)$$

а углы θ и θ' между векторами v и v' и положительными осями x и x' (вектором V)

$$\cos \theta' = \frac{v \cos \theta - V}{\sqrt{(v - V)^2 - v^2 \frac{V^2}{c^2} \sin^2 \theta}}$$
(1.12)

И

$$\cos\theta = \frac{v'\cos\theta' + V'}{\sqrt{(v'+V')^2 - \frac{V^2}{c^2}(v'\cos\theta' + V')^2}}\sqrt{1 - \frac{V^2}{c^2}}.$$
 (1.13)

В частности, при v = c (v' = c') из преобразований (1.10) и (1.11) получаем

$$c' = \gamma^2 \left(c - \frac{V}{c} c \cos \theta \right)$$
(1.14)

И

$$c = c' + \frac{V}{c}c'\cos\theta', \qquad (1.15)$$

где углы θ и θ' между векторами c и c' и положительными осями x и x' (вектором V) связаны преобразованиями

$$\cos\theta' = \frac{\cos\theta - \frac{V}{c}}{1 - \frac{V}{c}\cos\theta}$$
(1.16)

И

$$\cos\theta = \frac{\cos\theta' + \frac{V}{c}}{1 + \frac{V}{c}\cos\theta'}.$$
(1.17)

Это явление называемое аберрацией света аналогично аберрации света в СТО.

Если в формуле (1.14) угол θ выразить через угол θ' с помощью преобразования (1.17), то формула (1.14) перепишется

$$c' = \frac{c}{1 + \frac{V}{c}\cos\theta'}.$$
(1.18)

Этой формулой описывается скорость света c' в системе отсчета S'. Как видно из (1.18), скорость света c' в системе отсчета S' анизотропна. Но, тем не менее (см., например, [16]), это находится в полном соответствии с экспериментами Майкельсона-Морли. Суммарное время распространения света в прямом и обратном направлении на отрезке длины l', расположенном, например, в начале координат S' под углом θ' к положительной оси x' (оси анизотропии), от ориентации θ' не зависит

$$t' = \frac{l'}{c} \left(1 + \frac{V}{c} \cos \theta' \right) + \frac{l'}{c} \left(1 + \frac{V}{c} \cos(\theta' + 180^\circ) \right) = \frac{2l'}{c}$$

В частности, если к преобразованиям (1.2) и (1.3) применительно к электромагнитной волне, испущенной из начала координат S(S') в момент времени t' = t = 0 и распространяющейся со скоростью c(c'), применить преобразования (1.14) и (1.15), то получится

$$x' = \gamma \left(x - \frac{V}{c} ct \right), \quad y' = y, \quad z' = z, \quad t' = \gamma^{-1} t, \quad c' = \gamma^{2} \left(c - \frac{V}{c} \frac{x}{t} \right)$$
(1.19)

И

$$x = \gamma \left(x' + \frac{V}{c} c' t' \right), \quad y = y', \quad z = z', \quad t = \gamma t', \quad c = c' + \frac{V}{c} \frac{x'}{t'}, \quad (1.20)$$

или, будучи записаны в симметричной 4-мерной форме

$$x' = \gamma \left(x - \frac{V}{c} ct \right), \quad y' = y, \quad z' = z, \quad c't' = \gamma \left(ct - \frac{V}{c} x \right)$$
(1.21)

И

$$x = \gamma \left(x' + \frac{V}{c} c't' \right), \quad y = y', \quad z = z', \quad ct = \gamma \left(c't' + \frac{V}{c} x' \right), \tag{1.22}$$

практически не отличаются по виду от 4-мерных релятивистских преобразований Лоренца

$$x' = \gamma \left(x - \frac{V}{c} ct \right), \quad y' = y, \quad z' = z, \quad ct' = \gamma \left(ct - \frac{V}{c} x \right)$$

И

$$x = \gamma \left(x' + \frac{V}{c} ct' \right), \quad y = y', \quad z = z', \quad ct = \gamma \left(ct' + \frac{V}{c} x' \right)$$

и также "симметричны" относительно замены координат. Только теперь в роли четвертой координаты в движущейся системе отсчета S' выступает не ct', а c't'.

1.3. Преобразование ускорения

Продифференцировав преобразования (1.8) и (1.9) по времени получаем, очевидно, преобразование ускорения

$$a'_{x} = \frac{a_{x}}{\left(1 - \frac{V^{2}}{c^{2}}\right)^{3/2}}, \quad a'_{y} = \frac{a_{y}}{1 - \frac{V^{2}}{c^{2}}}, \quad a'_{z} = \frac{a_{z}}{1 - \frac{V^{2}}{c^{2}}}$$
(1.23)

И

$$a_x = a'_x \left(1 - \frac{V^2}{c^2}\right)^{3/2}, \quad a_y = a'_y \left(1 - \frac{V^2}{c^2}\right), \quad a_z = a'_z \left(1 - \frac{V^2}{c^2}\right).$$
 (1.24)

Модули векторов a и a' в системах отсчета S и S', очевидно, связаны преобразованиями

$$a' = \frac{a\sqrt{1 - \frac{V^2}{c^2}\sin^2\theta}}{\left(1 - \frac{V^2}{c^2}\right)^{3/2}}$$
(1.25)

И

$$a = a' \sqrt{1 - \frac{V^2}{c^2} \cos^2 \theta'} \left(1 - \frac{V^2}{c^2}\right), \qquad (1.26)$$

а углы θ и θ' между векторами a и a' и положительными осями x и x' (вектором V)

$$\cos\theta' = \frac{\cos\theta}{\sqrt{1 - \frac{V^2}{c^2}\sin^2\theta}}$$
(1.27)

И

$$\cos\theta = \frac{\cos\theta'}{\sqrt{1 - \frac{V^2}{c^2}\cos^2\theta'}} \sqrt{1 - \frac{V^2}{c^2}}.$$
 (1.28)

1.4. Интервал

Интервалом ds, как известно, называется мнимое расстояние в воображаемом четырехмерном пространстве-времени Минковского между двумя бесконечно близкими событиями. В системе отсчета S интервал ds между причинно связанными событиями, как известно, имеет вид

$$ds = i\sqrt{c^{2}dt^{2} - dx^{2} - dy^{2} - dz^{2}} = icdt\sqrt{1 - \frac{v^{2}}{c^{2}}},$$

$$(1.29)$$

$$dy^{2} + dz^{2}$$

где $v^2 = \frac{dx^2 + dy^2 + dz^2}{dt^2}$

Интервал ds' событий в системе отсчета S' найдем, соответственно, подставив в выражение (1.29) преобразование (1.3). В результате

$$ds' = i \sqrt{\left(cdt' - \frac{V}{c}dx'\right)^2 - dx'^2 - dy'^2 - dz'^2} = icdt' \sqrt{\left(1 - \frac{V}{c}\frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}},$$
 (1.30)

где
$$v'^2 = \frac{dx'^2 + dy'^2 + dz'^2}{dt'^2}$$
, $\frac{V}{c}\frac{v'}{c}$ - скалярное произведение векторов $\frac{V}{c}$ и $\frac{v'}{c}$. Параметр

 $\left(1 - \frac{V}{c}\frac{v'}{c}\right)$ в выражении (1.30) характеризует анизотропию пространства в движущейся системе отсчета *S'*. Применительно к Земле, т.е. в предположении, что Земля движется

сквозь пространство со скоростью около 400 км/с параметр $\left(1 - \frac{V}{c} \frac{v'}{c}\right)$ при $v' \approx c'$ лишь

немногим отличается от единицы 1± 0.001. В СТО этот параметр равен единице.

Величины
$$\sqrt{\left(1 - \frac{V}{c}\frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}}$$
 и $\sqrt{1 - \frac{v^2}{c^2}}$, очевидно, связаны $\sqrt{\left(1 - \frac{V}{c}\frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}} = \gamma \sqrt{1 - \frac{v^2}{c^2}}$. (1.31)

1.5. Собственное время

Собственным временем ^т, как известно, называется время, отсчитываемое по часам, движущимся вместе с объектом. В СТО собственное время движущихся часов всегда меньше, чем соответствующий промежуток времени в той системе отсчета, относительно которой рассматривается движение.

В теории же анизотропного пространства в отличие от СТО собственное время может быть как меньше, так и больше, чем соответствующий промежуток времени в той системе отсчета, относительно которой рассматривается движение.

Действительно, предположим, что в системе отсчета S' под произвольным углом к оси x' движутся часы со скоростью v'. Интервал часов в системе отсчета S', как известно, имеет вид (1.30), в собственной системе отсчета S_0

$$ds_0 = icdt \tag{1.32}$$

Так как

$$icdt'\sqrt{\left(1-\frac{V}{c}\frac{v'}{c}\right)^2-\frac{{v'}^2}{c^2}}=icdt,$$

то

$$d\tau = dt' \sqrt{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}}.$$
 (1.33)

Т.е. действительно, часы, в зависимости от направления движения (определяется

скалярным произведением векторов $\frac{V}{c}$ и $\frac{v'}{c}$), могут как отставать, так и спешить по сравнению с временем dt'.

Интегрируя выражение (1.33) по времени получаем промежуток времени $\tau_2 - \tau_1$, показываемый движущимися часами, если по неподвижным в системе отсчета S' часам пройдет время $\Delta t' = t'_2 - t'_1$:

$$\tau_2 - \tau_1 = \int_{t_1}^{t_2} \sqrt{\left(1 - \frac{V}{c} \frac{v'(t')}{c}\right)^2 - \frac{(v'(t'))^2}{c^2}}.$$
(1.34)

Если, например, во вращающейся с угловой скоростью Ω системе отсчета S'(предположим, Земли) двое часов вылетев из одной географической точки со скоростью v' в противоположных направлениях (по ходу вращения Земли и против) по окружности радиуса R вернутся в исходную точку и сверят часы, то часы покажут разное время. Если, по неподвижным в системе отсчета S' часам пройдет время $\Delta t' = t'_2 - t'_1$, то по часам, летевшим по ходу вращения, пройдет время

$$\Delta \tau_{+} = \Delta t' \sqrt{\left(1 - \frac{R\Omega}{c} \frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}},$$

по часам, летевшим против вращения

$$\Delta \tau_{-} = \Delta t' \sqrt{\left(1 + \frac{R\Omega}{c} \frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}}.$$

Разница составит

$$\Delta \tau_{-} - \Delta \tau_{+} = \Delta t' \left(\sqrt{\left(1 + \frac{R\Omega}{c} \frac{v'}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}} - \sqrt{\left(1 - \frac{R\Omega}{c} \frac{v'}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}} \right).$$

Таким образом, если двое часов, вылетев из одной географической точки

(предположим, вдоль экватора) одни на восток другие на запад с одинаковой скоростью, вернутся в исходную точку и сверят часы, то часы, летевшие на восток, покажут меньшее время, чем часы, летевшие на запад. Согласно же СТО часы, летевшие в противоположных направлениях, должны показывать одинаковое время.

Для примера, если принять радиус Земли равным $R \approx 637814000 \text{ sm}$, угловую скорость вращения Земли равной $\Omega \approx 7.27 \cdot 10^{-5} \text{ rad/s}$, скорость света в вакууме равной $c \approx 2.99792458 \cdot 10^{10} \text{ sm/s}$, то при скорости часов около $v' \approx 50000 \text{ sm/s}$, для $\Delta \tau_+ - \Delta t$ получаем – $3.2 \cdot 10^{-7} \text{ s}$, для $\Delta \tau_- - \Delta t$ получаем + $9.4 \cdot 10^{-8} \text{ s}$. Разница $\Delta \tau_- - \Delta \tau_+$ составит $4.1 \cdot 10^{-7} \text{ s}$

1.6. Собственная длина. Сокращение размера движущегося тела. Одновременность событий

Собственной длиной l_0 стержня, как известно, называется его длина в той системе отсчета, в которой он покоится. В СТО, например, собственная длина стержня всегда больше, чем соответствующая длина стержня, измеренная в той системе отсчета, относительно которой рассматривается движение.

В теории же анизотропного пространства собственная длина стержня может быть как больше, так и меньше, чем соответствующая длина стержня, измеренная в той системе отсчета, относительно которой рассматривается движение.

Действительно, предположим, что в системе отсчета S' длина стержня, направленная вдоль оси x' и определяемая путем одновременной (допустим, в момент времени t' = 0) засечки концов стержня, равна $l_0 = x'_2 - x'_1$. Тогда в системе отсчета S длина этого стержня, также определяемая путем одновременной (допустим, в момент времени t = 0 - в теории анизотропного пространства события, одновременные в одной системе отсчета, одновременны и в другой) засечки концов стержня, согласно преобразованию (1.3) будет равна

$$l = x_2 - x_1 = l_0 \sqrt{1 - \frac{V^2}{c^2}}$$

Т.е. в данном случае, как и в СТО, самую большую длину стержень будет иметь в движущейся системе отсчета S', где он покоится.

Однако расчеты, проделанные с покоящимся в системе отсчета S стержнем, показывают, что с точки зрения движущегося наблюдателя S' длина покоящегося в системе отсчета S стержня, напротив, удлиняется и составляет

$$l' = \frac{l_0}{\sqrt{1 - \frac{V^2}{c^2}}}$$

где $l_0 = x_2 - x_1$ - длина стержня, измеренная в системе отсчета *S*. Т.е. в данном случае стержень в системе отсчета *S*, где он покоится, имеет самую наименьшую длину. С точки зрения СТО во втором случае, как и в первом случае, должно быть

$$l' = l_0 \sqrt{1 - \frac{V^2}{c^2}}$$

и самую большую длину стержень должен иметь в системе отсчета S, где он покоится.

1.7. 4-вектор события и 4-вектор скорости

Будем основываться на четырехмерном формализме с мнимой временной координатой *it* (в этом случае отпадает необходимость различать контра- и ковариантные компоненты 4-вектора). Тогда согласно преобразованиям (1.21) и (1.22) событиям, связанным с электромагнитной волной, испущенной из начала координат S(S') в момент времени t = t' = 0 можно сопоставить точки четырехмерного пространства с координатами (x_c, y_c, z_c, ict) и $(x'_c, y'_c, z'_c, ic't')$, и для светового 4-вектора события в системах отсчета *S* и *S'* можно написать

$$\boldsymbol{R}_{c} = (R_{c1}, R_{c2}, R_{c3}, R_{c4}) = (x_{c}, y_{c}, z_{c}, ict) = (\boldsymbol{r}_{c}, ict)$$
(1.35)

И

$$\boldsymbol{R}_{c}' = (R_{c1}', R_{c2}', R_{c3}', R_{c4}') = (x_{c}', y_{c}', z_{c}', ic't') = (\boldsymbol{r}_{c}', ic't'), \qquad (1.36)$$

где \mathbf{r}_c и \mathbf{r}_c' - обычные трехмерные векторы. Тогда преобразования (1.21) и (1.22) перепишутся как

$$R'_{ci} = \alpha'_{ij} R_{cj}$$
(1.37)

И

$$R_{ci} = \alpha_{ij} R'_{cj}, \qquad (1.38)$$

где по повторяющимся индексам идет суммирование и

$$\left\{ \alpha'_{ij} \right\} \equiv \begin{bmatrix} \gamma & 0 & 0 & i\gamma\beta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ - & i\gamma\beta & 0 & 0 & \gamma \end{bmatrix}$$
(1.39)

И

$$\{ \alpha_{ij} \} = \{ \alpha'_{ij} \}^{-1} \equiv \begin{bmatrix} \gamma & 0 & 0 & -i\gamma\beta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ i\gamma\beta & 0 & 0 & \gamma \end{bmatrix}$$
 (1.40)

- матрицы преобразования Лоренца, $\beta = \frac{V}{c}$.

В общем случае для 4-вектора события согласно преобразованиям (1.2) и (1.3) имеем

$$\boldsymbol{R} = (R_1, R_2, R_3, R_4) = (x, y, z, ict) = (\boldsymbol{r}, ict)$$
(1.41)

И

$$\boldsymbol{R}' = (R_1', R_2', R_3', R_4') = (x', y', z', ict') = (\boldsymbol{r}', ict'), \qquad (1.42)$$

где в качестве четвертой переменной выступает величина it' (точнее, ict'), как и в СТО. Преобразования (1.2) и (1.3) перепишутся при этом как

$$R'_i = \varepsilon'_{ij}R_j \tag{1.43}$$

И

$$R_i = \varepsilon_{ij} R'_j, \qquad (1.44)$$

где по повторяющимся индексам идет суммирование и

$$\left\{ \varepsilon_{ij}' \right\} = \begin{bmatrix} \gamma & 0 & 0 & i\gamma\beta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \gamma^{-1} \end{bmatrix}$$
(1.45)

И

$$\left\{ \varepsilon_{ij} \right\} = \left\{ \varepsilon'_{ij} \right\}^{-1} \equiv \begin{bmatrix} \gamma^{-1} & 0 & 0 & -i\gamma\beta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \gamma \end{bmatrix}$$
 (1.46)

- матрицы преобразования.

Однако определенный таким образом вектор (1.42) не является 4-вектором в математическом смысле, так как при переходе в другую систему отсчета не сохраняется. Чтобы найти четырехмерный вектор события, который сохраняется, надо найти интервал *s*' в системе отсчета *S*', а через него выразить 4-вектор события.

Интервал s' события в системе отсчета S', как мы знаем, имеет вид

$$s' = i \sqrt{\left(ct' - \frac{V}{c}x' \right)^2 - x'^2 - y'^2 - z'^2} ,$$

откуда для 4-вектора **R**' события получаем

$$\boldsymbol{R}' \equiv (R_1', R_2', R_3', R_4') = \left(\boldsymbol{x}', \boldsymbol{y}', \boldsymbol{z}', i\left(\boldsymbol{ct}' - \frac{\boldsymbol{V}}{\boldsymbol{c}}\boldsymbol{x}'\right)\right) = \left(\boldsymbol{r}', i\left(\boldsymbol{ct}' - \frac{\boldsymbol{V}}{\boldsymbol{c}}\boldsymbol{r}'\right)\right).$$
(1.47)

4-векторы (1.41) и (1.47), очевидно, связаны матрицами преобразования Лоренца (1.39) и (1.40).

4-вектор скорости в системе отсчета S, очевидно, определится как производная 4-вектора события \boldsymbol{R}

$$\boldsymbol{U} = (U_1, U_2, U_3, U_4) = \frac{d}{d\tau} \boldsymbol{R} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \frac{d}{dt} \boldsymbol{R} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} (\boldsymbol{v}, ic)$$
(1.48)

где в качестве переменной дифференцирования выступает собственное время τ частицы. В системе отсчета S' 4-вектором скорости является, очевидно,

$$U' = (U'_{1}, U'_{2}, U'_{3}, U'_{4}) = \frac{1}{\sqrt{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^{2} - \frac{{v'}^{2}}{c^{2}}}} \frac{d}{dt'} \mathbf{R}' = \frac{1}{\sqrt{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^{2} - \frac{{v'}^{2}}{c^{2}}}} \left(\mathbf{v}', i\left(1 - \frac{V}{c} \frac{v'}{c}\right)c\right).$$
(1.49)

Компоненты 4-вектора *U* и *U*', очевидно, связаны матрицами преобразования Лоренца (1.39) и (1.40).

Преобразования (1.37) и (1.38) имеют простой симметричный вид и являются, таким образом, ключевыми в теории анизотропного пространства. Все четырехмерные векторы, компоненты которых преобразуются по этим правилам, будем называть 4-векторами.

1.8. Преобразование координат и времени при переходе от одной инерциальной системы отсчета к другой.

Пусть теперь система отсчета S', как и прежде, движется относительно системы отсчета S со скоростью V, а система отсчета S'' движется относительно системы отсчета S' со скоростью V' вдоль положительной оси x'. (Ориентация оси x' по отношению к вектору V (оси x) в общем случае может быть любой.) Координаты события (x', y', z', t')и (x'', y'', z'', t'') в системах отсчета S' и S'', очевидно, будут связаны преобразованиями

$$x'' = \frac{x' - \frac{V'}{c}ct'}{\sqrt{\left(1 - \frac{V}{c}\frac{V'}{c}\right)^2 - \frac{{V'}^2}{c^2}}}, \quad y'' = y', \quad z'' = z', \quad ct'' = ct'\sqrt{\left(1 - \frac{V}{c}\frac{V'}{c}\right)^2 - \frac{{V'}^2}{c^2}}$$
(1.50)

И

$$x' = \left(x'' + \frac{V''}{c}ct''\right)\sqrt{\left(1 - \frac{V}{c}\frac{V'}{c}\right)^2 - \frac{{V'}^2}{c^2}}, \quad y' = y'', \quad z' = z'', \quad ct' = \frac{ct''}{\sqrt{\left(1 - \frac{V}{c}\frac{V'}{c}\right)^2 - \frac{{V'}^2}{c^2}}}.$$
 (1.51)

где $V'' = \gamma'^2 V'$ – скорость системы отсчета S' относительно системы отсчета S'',

$$\gamma' = 1/\sqrt{\left(1 - \frac{V}{c}\frac{V'}{c}\right)^2 - \frac{{V'}^2}{c^2}}$$
 - обобщенный Лоренц фактор.

Глава 2. Динамика

2.1. Функция Лагранжа для свободной частицы. Собственная масса

Действие для свободной материальной частицы в системе отсчета S, как известно, имеет вид (не путать с системой отсчета S)

$$S = im_0 c \Big|_a^b ds , \qquad (2.1)$$

где m_0 - собственная масса частицы, а интеграл берется вдоль мировой линии между двумя заданными событиями *a* и *b* – нахождением частицы в начальном и конечном местах в определенные моменты времени t_1 и t_2 . Подставив вместо *ds* выражение (1.29) и переходя к интегрированию по времени получаем

$$S = \int_{t_1}^{t_2} -m_0 c^2 \sqrt{1 - \frac{v^2}{c^2}} dt,$$

подынтегральное выражение которого есть функция Лагранжа для свободной частицы

$$L = -m_0 c^2 \sqrt{1 - \frac{v^2}{c^2}}.$$
 (2.2)

Действие для свободной частицы в системе отсчета S', очевидно, имеет вид (не путать с системой отсчета S')

$$S' = \int_{t_1'}^{t_2'} - m_0 c^2 \sqrt{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 - \frac{{v'}^2}{c^2}} dt',$$

подынтегральное выражение которого, очевидно, есть функция Лагранжа для свободной частицы в системе отсчета S'

$$L' = -m_0 c^2 \sqrt{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}}.$$
 (2.3)

2.2. Энергия и импульс свободной частицы. Преобразование энергии, импульса и силы. Собственная энергия

Импульсом частицы в системе отсчета S, как известно, является вектор

$$\boldsymbol{p} = \frac{\partial L}{\partial \boldsymbol{v}} = \frac{m_0 \boldsymbol{v}}{\sqrt{1 - \frac{\boldsymbol{v}^2}{c^2}}},$$
(2.4)

или в координатной форме

$$p_x = \frac{m_0 v_x}{\sqrt{1 - \frac{v^2}{c^2}}}, \quad p_y = \frac{m_0 v_y}{\sqrt{1 - \frac{v^2}{c^2}}}, \quad p_z = \frac{m_0 v_z}{\sqrt{1 - \frac{v^2}{c^2}}}.$$
(2.5)

Импульсом частицы в системе отсчета S' является, очевидно, вектор

$$\boldsymbol{p}' = \frac{\partial L'}{\partial \boldsymbol{v}'} = \frac{m_0 \left(\left(1 - \frac{\boldsymbol{V}}{c} \frac{\boldsymbol{v}'}{c} \right) \boldsymbol{V} + \boldsymbol{v}' \right)}{\sqrt{\left(1 - \frac{\boldsymbol{V}}{c} \frac{\boldsymbol{v}'}{c} \right)^2 - \frac{{\boldsymbol{v}'}^2}{c^2}}},$$
(2.6)

или в координатной форме

$$p'_{x} = \frac{m_{0}\left(\left(1 - \frac{V}{c}\frac{v'_{x}}{c}\right)V + v'_{x}\right)}{\sqrt{\left(1 - \frac{V}{c}\frac{v'_{x}}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}}}, \quad p'_{y} = \frac{m_{0}v'_{y}}{\sqrt{\left(1 - \frac{V}{c}\frac{v'_{x}}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}}}, \quad p'_{z} = \frac{m_{0}v'_{z}}{\sqrt{\left(1 - \frac{V}{c}\frac{v'_{x}}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}}}.$$
 (2.7)

Энергией частицы в системе отсчета S является, очевидно,

$$E = \mathbf{pv} - L = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}},$$
(2.8)

где $m_0 c^2$ – собственная энергия частицы, в системе отсчета S' -

$$E' = \mathbf{p}'\mathbf{v}' - L' = \frac{m_0 c^2}{\sqrt{1 - \frac{{v'}^2}{\left(1 - \frac{V}{c} \frac{\mathbf{v}'}{c}\right)^2 c^2}}}.$$
(2.9)

После вычета собственной энергии $m_0 c^2$ частицы получаем кинетические энергии частиц

в системах отсчета S и S'

$$E_{k} = m_{0}c^{2} \left(\frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} - 1 \right)$$
(2.10)

И

$$E'_{k} = m_{0}c^{2} \left(\frac{1}{\sqrt{1 - \frac{v'^{2}}{\left(1 - \frac{V}{c}\frac{v'}{c}\right)^{2}c^{2}}}} - 1 \right).$$
(2.11)

Сравнивая между собой выражения (2.7) и (2.5) находим преобразование импульса

/

$$p'_{x} = p_{x}\sqrt{1 - \frac{V^{2}}{c^{2}}}, \quad p'_{y} = p_{y}, \quad p'_{z} = p_{z}$$
 (2.12)

И

$$p_{x} = \frac{p'_{x}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad p_{y} = p'_{y}, \quad p_{z} = p'_{z}.$$
(2.13)

(В СТО, как известно, преобразование импульса имеет вид

$$p'_{x} = \frac{p_{x} - \frac{V}{c} \frac{E}{c}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad p'_{y} = p_{y}, \quad p'_{z} = p_{z}.$$

Преобразование импульса (2.12) в отличие от релятивистского преобразования импульса (см. [17]) полностью удовлетворяет принципу соответствия и при V << с, как и положено, плавно переходит в классическое преобразование импульса

$$p'_x = p_x, \quad p'_y = p_y, \quad p'_z = p_z$$

В этом легко убедиться, если преобразование (2.12) разложить в ряд по степеням $\frac{V}{c}$ и

ограничиться членом первого порядка малости по $\frac{V}{c}$:

$$p'_{x} = p_{x} - \frac{1}{2} \frac{V^{2}}{c^{2}} p_{x} - \frac{1}{8} \frac{V^{4}}{c^{4}} p_{x} - ..., \quad p'_{y} = p_{y}, \quad p'_{z} = p_{z}$$

Релятивистское преобразование импульса, как известно (см. [17]), этому принципу не удовлетворяет и при V << c переходит не в классическое преобразование импульса, а в преобразование

$$p'_{x} = p_{x} - \frac{V}{c}\frac{E}{c}, \quad p'_{y} = p_{y}, \quad p'_{z} = p_{z},$$

содержащее член первого порядка малости по $\frac{V}{c}$. В этом легко убедиться, если

релятивистское преобразование импульса разложить в ряд по степеням $\frac{V}{c}$ и ограничиться

членом первого порядка малости по $\frac{V}{c}$:

$$p'_{x} = p_{x} - \frac{V}{c}\frac{E}{c} + \frac{1}{2}\frac{V^{2}}{c^{2}}p_{x} - ..., \quad p'_{y} = p_{y}, \quad p'_{z} = p_{z}.$$

Модули векторов p и p' в системах отсчета S и S', очевидно, связаны преобразованиями

$$p' = p \sqrt{1 - \frac{V^2}{c^2} \cos^2 \theta} .$$
 (2.14)

И

$$p = p' \frac{\sqrt{1 - \frac{V^2}{c^2} \sin^2 \theta'}}{\sqrt{1 - \frac{V^2}{c^2}}},$$
(2.15)

а углы θ и θ' между векторами *P* и *P* и положительными осями *x* и *x* (вектором *V*)

$$\cos\theta' = \frac{\cos\theta}{\sqrt{1 - \frac{V^2}{c^2}\cos^2\theta}} \sqrt{1 - \frac{V^2}{c^2}}$$
(2.16)

И

$$\cos\theta = \frac{\cos\theta'}{\sqrt{1 - \frac{V^2}{c^2}\sin^2\theta'}}.$$
(2.17)

Аналогично, сравнивая между собой (2.9) и (2.8) с учетом связи

$$\left(1 - \frac{V}{c}\frac{v'}{c}\right) = \gamma^2 \left(1 - \frac{V}{c}\frac{v}{c}\right)$$
(2.18)

находим преобразование энергии

$$\frac{E'}{c} = \frac{\frac{E}{c} - \frac{V}{c}p_x}{\sqrt{1 - \frac{V^2}{c^2}}}$$
(2.19)

И

$$\frac{E}{c} = \left(\frac{E'}{c} + \frac{V'}{c} p'_{x}\right) \sqrt{1 - \frac{V^{2}}{c^{2}}}.$$
(2.20)

Продифференцировав преобразования (2.12) и (2.13) по времени получаем преобразование силы

$$f'_{x} = f_{x}, \quad f'_{y} = \frac{f_{y}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad f'_{z} = \frac{f_{z}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}$$
(2.21)

И

$$f_x = f'_x, \quad f_y = f'_y \sqrt{1 - \frac{V^2}{c^2}}, \quad f_z = f'_z \sqrt{1 - \frac{V^2}{c^2}}.$$
 (2.22)

Модули векторов f и f' в системах отсчета S и S', очевидно, связаны преобразованиями

$$f' = f \frac{\sqrt{1 - \frac{V^2}{c^2} \cos^2 \theta}}{\sqrt{1 - \frac{V^2}{c^2}}}.$$
(2.23)

И

$$f = f' \sqrt{1 - \frac{V^2}{c^2} \sin^2 \theta'}, \qquad (2.24)$$

а углы θ и θ' между векторами f и f' и положительными осями x и x' (вектором V)

$$\cos\theta' = \frac{\cos\theta}{\sqrt{1 - \frac{V^2}{c^2}\cos^2\theta}} \sqrt{1 - \frac{V^2}{c^2}}$$
(2.25)

И

$$\cos\theta = \frac{\cos\theta'}{\sqrt{1 - \frac{V^2}{c^2}\sin^2\theta'}}$$
(2.26)

Преобразование силы (2.21), как видно, полностью удовлетворяет принципу соответствия и при $V \ll c$, как и положено, плавно переходит в классическое преобразование силы

$$f'_x = f_x, \quad f'_y = f_y, \quad f'_z = f_z.$$

В этом легко убедиться, если преобразование (2.21) разложить в ряд по степеням $\frac{v}{c}$ и

ограничиться членом первого порядка малости по $\frac{V}{C}$:

$$f'_{x} = f_{x}, \quad f'_{y} = f_{y} + \frac{1}{2} \frac{V^{2}}{c^{2}} f_{y} + ..., \quad f'_{z} = f_{z} + \frac{1}{2} \frac{V^{2}}{c^{2}} f_{z} + ...,$$

Классическое преобразование импульса $p'_x = p_x$, $p'_y = p_y$, $p'_z = p_z$ (см. [17]) легко получить в рамках четырехмерного формализма. Действительно, предположим, что в системе отсчета S, неподвижно связанной с абсолютным пространством, движется частица со скоростью v (v << c). Интервал ds частицы в системе отсчета S имеет вид (1.29), но так как мы рассматриваем случай v << c для интервала ds необходимо ограничиться первым приближением

$$ds = icdt \left(1 - \frac{1}{2} \frac{v^2}{c^2} \right).$$

Интервал ds' частицы в системе отсчета S' найдем, очевидно, подставив в выражение (1.29) преобразование Галилея

$$x = x' + \frac{V}{c}ct', \quad y = y', \quad z = z', \quad ct = ct'$$

В результате

$$ds' = icdt'\sqrt{1 - \frac{(V + v')^2}{c^2}},$$

но так как мы рассматриваем случай |V + v'| << cдля интервала ds' также необходимо ограничиться первым приближением

$$ds' = icdt' \left(1 - \frac{1}{2} \frac{(V + v')^2}{c^2} \right).$$

Таким образом, функциями Лагранжа для свободной частицы в системах отсчета S и S' в классической механике являются

$$L = -m_0 c^2 + \frac{m_0 v^2}{2}$$

И

$$L' = -m_0 c^2 + \frac{m_0 (V + v')^2}{2},$$

откуда для импульса частиц получаем

$$\boldsymbol{p} = \frac{\partial L}{\partial \boldsymbol{v}} = m_0 \boldsymbol{v}$$

И

$$\boldsymbol{p}' = \frac{\partial L'}{\partial \boldsymbol{v}'} = m_0 (\boldsymbol{V} + \boldsymbol{v}').$$

Так как (V + v') = v, то отсюда получаем, что

$$p' = p$$
.

Т.е. импульс частицы в классической механике при переходе от одной инерциальной системы отсчета к другой не меняется.

Энергией частицы в системах отсчета S и S' является, очевидно,

$$E = \mathbf{pv} - L = m_0 c^2 + \frac{m_0 v^2}{2}$$

И

$$E' = \mathbf{p}'\mathbf{v}' - L' = m_0 c^2 \left(1 - \frac{1}{2} \frac{V^2}{c^2}\right) + \frac{m_0 {v'}^2}{2},$$

сравнив которые между собой получаем преобразование энергии в классической механике

$$\frac{E'}{c} = \frac{E}{c} - \frac{V}{c} p_x$$

После вычета собственной энергии $m_0 c^2$ частицы (в системе отсчета S' энергии

 $m_0 c^2 \left(1 - \frac{1}{2} \frac{V^2}{c^2}\right)$) получаем кинетические энергии этих частиц

$$E_k = \frac{m_0 v^2}{2}$$

И

$$E'_k = \frac{m_0 {v'}^2}{2}$$
.

2.3. Связь между энергией, импульсом и скоростью свободной частицы. 4-вектор импульса. Функция Гамильтона

Из формул (2.6) и (2.9) вытекает соотношение между энергией, импульсом и скоростью свободной частицы в системе отсчета S'

7

$$\boldsymbol{p}' = \frac{E'}{c^2} \left(\boldsymbol{V} + \frac{\boldsymbol{v}'}{\left(1 - \frac{\boldsymbol{V}}{c} \frac{\boldsymbol{v}'}{c}\right)} \right).$$
(2.27)

В частности, при v' = c' получаем

$$\boldsymbol{p}' = \frac{E'}{c'} \boldsymbol{n}', \qquad (2.28)$$

где n' - единичный вектор, направленный по ходу распространения света.

В системе отсчета *S*, как и в СТО, связь между энергией, импульсом и скоростью свободной частицы дается, очевидно, выражением

$$\boldsymbol{p} = \frac{E\boldsymbol{v}}{c^2},\tag{2.29}$$

откуда при v = c получаем

$$\boldsymbol{p} = \frac{E}{c} \boldsymbol{n} , \qquad (2.30)$$

где *n* - единичный вектор, направленный в сторону распространения света.

4-вектором импульса частицы в системах отсчета S и S' является, очевидно,

$$m_0 \boldsymbol{U} = \left(\boldsymbol{p}, \quad i \frac{E}{c} \right) \tag{2.31}$$

И

$$m_0 U' = \left(p' - \frac{E'}{c} \frac{V}{c}, \quad i \frac{E'}{c} \right).$$
(2.32)

4-векторы импульса (2.31) и (2.32) связаны матрицами преобразования Лоренца (1.39) и (1.40), откуда для квадрата 4-вектора импульса свободной частицы в системах отсчета *S* и *S*' получаем

$$p^2 - \frac{E^2}{c^2} = -m_0^2 c^2 \tag{2.33}$$

И

$$p'^{2} - 2p'\frac{V}{c}\frac{E'}{c} - \left(1 - \frac{V^{2}}{c^{2}}\right)\frac{E'^{2}}{c^{2}} = -m_{0}^{2}c^{2}.$$
(2.34)

Функциями Гамильтона в системах отсчета S и S' являются, очевидно,

$$H = c\sqrt{p^2 + m_0^2 c^2}$$
(2.35)

И

$$H' = c \sqrt{\left(p' \frac{V'}{c} \right)^2 + \frac{\left(p'^2 + m_0^2 c^2 \right)}{\left(1 - \frac{V^2}{c^2} \right)}} - p' V' .$$
(2.36)

2.4. Связь между кинетической энергией и скоростью свободной частицы

Так как на практике вместо скорости v' частиц имеют дело с кинетической энергией E'_k (элементарным частицам сообщается кинетическая энергия E'_k , а не скорость v'), то отсюда вытекает необходимость выразить скорость v' частицы через кинетическую энергию E'_k . Для этого, очевидно, надо решить уравнение (2.11) относительно v', в результате

$$v'(\theta') = c \frac{\sqrt{1 + \frac{m_0^2 c^4}{E_k'^2 + 2E_k' m_0 c^2}} - \frac{V}{c} \cos \theta'}{1 - \frac{V^2}{c^2} \cos^2 \theta' + \frac{m_0^2 c^4}{E_k'^2 + 2E_k' m_0 c^2}},$$
(2.37)

откуда получаем, что в теории анизотропного пространства при сообщении одной и той же кинетической энергии E'_k частица в зависимости от направления θ' движения приобретает разную скорость v'.

Отношением скорости v' частицы к скорости света c' является

$$\frac{v'}{c'}(\theta') = \frac{\sqrt{1 + \frac{m_0^2 c^4}{E_k'^2 + 2E_k' m_0 c^2} - \frac{V}{c} \cos \theta'}}{1 - \frac{V^2}{c^2} \cos^2 \theta' + \frac{m_0^2 c^4}{E_k'^2 + 2E_k' m_0 c^2}} \left(1 + \frac{V}{c} \cos \theta'\right).$$
(2.38)

Это отношение в разных направлениях различно. Однако, тем не менее, разность

$$\Delta t' = \frac{l'}{v'} - \frac{l'}{c'}$$
 времен распространения частицы и света на отрезке длины l' ,

расположенном, например, в начале координат S' под углом θ' к положительной оси x' (оси анизотропии), от угла θ' не зависит в полном соответствии с опытом.

2.5. Уравнение движения частицы

Производная от импульса (2.6) и (2.4) по времени есть, очевидно, сила, действующая на частицу в системах отсчета S' и S

$$f' = \frac{dp'}{dt'} = \frac{m_0 \left(a' - \left(\frac{V}{c}\frac{a'}{c}\right)V\right)}{\sqrt{\left(1 - \frac{V}{c}\frac{v'}{c}\right)^2 - \frac{{v'}^2}{c^2}}} + \frac{m_0 \left(\left(1 - \frac{V}{c}\frac{v'}{c}\right)\frac{V}{c}\frac{a'}{c} + \frac{v'}{c}\frac{a'}{c}\right)\left(\left(1 - \frac{V}{c}\frac{v'}{c}\right)V + v'\right)}{\left(\left(1 - \frac{V}{c}\frac{v'}{c}\right)^2 - \frac{{v'}^2}{c^2}\right)^2 - \frac{{v'}^2}{c^2}}$$
(2.39)

И

$$\boldsymbol{f} = \frac{d\boldsymbol{p}}{dt} = \frac{m_0 \boldsymbol{a}}{\sqrt{1 - \frac{v^2}{c^2}}} + \frac{m_0 \left(\frac{v}{c} \frac{\boldsymbol{a}}{c}\right) \boldsymbol{v}}{\left(1 - \frac{v^2}{c^2}\right)^{3/2}}.$$
(2.40)

Глава 3. Электричество

3.1. Закон Кулона. Собственный электрический заряд

В этой главе будет рассматриваться макроскопическая теория электричества, когда под электрическим зарядом будет подразумеваться заряд, усредненный по большому числу элементарных зарядов, ориентированных случайным образом в пространстве. При более детальном рассмотрении нужно учитывать структуру этих зарядов.

Как известно, собственным электрическим зарядом q_0 называется электрический заряд, измеренный в собственной системе отсчета S_0 заряда q_0 . Электрический заряд q_0 является инвариантом и при переходе в другую систему отсчета не меняется. В собственной системе отсчета (в гауссовой системе единиц), как показывает опыт, справедлив закон Кулона

$$\boldsymbol{E}_{0} = \frac{q_{0}}{r_{0}^{3}} \boldsymbol{r}_{0}, \qquad (3.1)$$

где E_0 - напряженность электрического поля (сила, отнесенная к единице электрического заряда), r_0 - радиус-вектор, проведенный из точки нахождения заряда q_0 в рассматриваемую точку поля. В координатной форме закон Кулона записывается

$$E_{0x} = \frac{q_0}{r_0^3} r_{0x}, \quad E_{0y} = \frac{q_0}{r_0^3} r_{0y}, \quad E_{0z} = \frac{q_0}{r_0^3} r_{0z}.$$
(3.2)

3.2. Электрическое (магнитное) поле движущегося в системе отсчета *S* электрического заряда. Частное преобразование электрического поля

Пусть положительный точечный электрический заряд q_0 (источник поля), с которым мысленно связана сопутствующая система отсчета S_0 (заряд q_0 расположен в начале координат S_0) движется в системе отсчета S со скоростью v вдоль положительной оси x. Здесь и далее под плоскостью $xz(x_0z_0)$ будет подразумеваться плоскость страницы, где ось $x(x_0)$ ориентирована вправо, а ось $z(z_0)$ направлена вверх; ось $y(y_0)$, очевидно, направлена от читателя.

Пусть на положительной оси y_0 системы отсчета S_0 на расстоянии r_{0y} от начала координат находится положительный пробный электрический заряд q_0 , движущийся вместе с системой отсчета S_0 . Сила, действующая на пробный заряд q_0 со стороны источника q_0 , равна

$$f_{0y} = \frac{q_0^2}{r_{0y}^2}$$

и направлена вдоль положительной оси Уо.

В соответствии с правилом преобразования силы (2.21) (в данном случае V = v) укомпонента силы в системе отсчета S равна

$$f_{y} = \frac{q_{0}^{2}}{r_{0y}^{2}} \sqrt{1 - \frac{v^{2}}{c^{2}}} = \frac{r_{0y} = r_{y}}{r_{y}^{2}} \sqrt{1 - \frac{v^{2}}{c^{2}}},$$

которая также направлена вдоль положительной оси ^у. Эта сила является электромагнитной силой и в соответствии с формулой Лоренца можно написать

$$\frac{q_0^2}{r_y^2} \sqrt{1 - \frac{v^2}{c^2}} = q_0 \left(E_y - \frac{v}{c} B_z \right),$$

решив которое относительно $E_{y}\left(B_{z}\right)$ получаем

$$E_{y} = \frac{q_{0}}{r_{y}^{2}\sqrt{1 - \frac{v^{2}}{c^{2}}}} \left(B_{z} = \frac{v}{c}\frac{q_{0}}{r_{y}^{2}\sqrt{1 - \frac{v^{2}}{c^{2}}}}\right).$$
(3.3)

Аналогичное выражение (кроме различия в знаке) можно получить для компоненты поля $E_z(B_y)$. Оно будет точно таким же, если бы пробный электрический заряд q_0 был бы расположен в системе отсчета S_0 на положительной оси z_0 на расстоянии r_{0z} от начала координат.

Остается выяснить, как преобразовывается продольная компонента электрического поля в направлении движения, когда пробный электрический заряд q_0 расположен в системе отсчета S_0 на положительной оси x_0 на расстоянии r_{0x} от начала координат.

Сила, действующая в этом случае на пробный заряд со стороны источника, равна

$$f_{0x} = \frac{q_0^2}{r_{0x}^2} \, .$$

В соответствии с правилом преобразования силы (2.21) х-компонента силы в системе отсчета *S* равна

$$f_x = \frac{q_0^2}{r_{0x}^2} = \frac{r_x}{\sqrt{1 - \frac{v^2}{c^2}}} \frac{q_0^2}{r_x^2} \left(1 - \frac{v^2}{c^2}\right),$$

которая также направлена вдоль положительной оси *x*. Эта сила является чисто электрической силой и для x-компоненты электрического поля можно написать

$$E_x = \frac{q_0}{r_x^2} \left(1 - \frac{v^2}{c^2} \right).$$
(3.4)

Сравнивая между собой выражения (3.2), (3.3) и (3.4) находим, что компоненты электрического поля в системах отсчета S и S_0 связаны преобразованиями

$$E_{0x} = E_x, \quad E_{0y} = E_y \sqrt{1 - \frac{v^2}{c^2}}, \quad E_{0z} = E_z \sqrt{1 - \frac{v^2}{c^2}}$$
 (3.5)

(если преобразование (3.5) формально умножить и поделить на $\sqrt{1 - \frac{v^2}{c^2}}$ оно, как и в СТО,

приобретает вид

$$E_{0x} = E_x, \quad E_{0y} = \frac{E_y - \frac{v}{c}B_z}{\sqrt{1 - \frac{v^2}{c^2}}}, \quad E_{0z} = \frac{E_z + \frac{v}{c}B_y}{\sqrt{1 - \frac{v^2}{c^2}}})$$

И

$$E_x = E_{0x}, \quad E_y = \frac{E_{0y}}{\sqrt{1 - \frac{v^2}{c^2}}}, \quad E_z = \frac{E_{0z}}{\sqrt{1 - \frac{v^2}{c^2}}}.$$
 (3.6)

Модули векторов E и E_0 в системах отсчета S и S_0 , очевидно, связаны преобразованиями

$$E_0 = E_{\sqrt{1 - \frac{v^2}{c^2} \sin^2 \theta}}$$
(3.7)

И

$$E = E_0 \frac{\sqrt{1 - \frac{v^2}{c^2} \cos^2 \theta_0}}{\sqrt{1 - \frac{v^2}{c^2}}},$$
(3.8)

а углы θ и θ_0 между векторами E и E_0 и положительными осями x и x' (вектором v)

$$\cos\theta_0 = \frac{\cos\theta}{\sqrt{1 - \frac{v^2}{c^2}\sin^2\theta}}$$
(3.9)

И

$$\cos\theta = \frac{\cos\theta_0}{\sqrt{1 - \frac{v^2}{c^2}\cos^2\theta_0}} \sqrt{1 - \frac{v^2}{c^2}}.$$
(3.10)

Найдем теперь конфигурацию электрического поля заряда q_0 , наблюдаемую в

системе отсчета S. В собственной системе отсчета S_0 конфигурация электрического поля

заряда q_0 имеет вид

$$E_0 = \frac{q_0}{r_0^2}$$

С помощью преобразований (3.7) и (1.4) при V = v и t = 0 преобразуем это выражение. В результате

$$E = \frac{q_0}{r^2} \cdot \frac{1 - \frac{v^2}{c^2}}{\left(\cos^2\theta + \left(1 - \frac{v^2}{c^2}\right)\sin^2\theta\right)^{3/2}},$$
 (3.11)

где θ - угол между положительной осью x (вектором v) и радиус-вектором r наблюдения.

В общем случае, очевидно,

$$E = \frac{q_0}{r^2} \cdot \frac{1 - \frac{v^2}{c^2}}{\left(\cos^2\theta_{vr} + \left(1 - \frac{v^2}{c^2}\right)\sin^2\theta_{vr}\right)^{\frac{3}{2}}},$$
(3.12)

где θ_{vr} - угол между вектором **v** и радиус-вектором **r** наблюдения.

Конфигурация магнитного поля заряда 90 в системе отсчета S, очевидно, имеет вид

$$B = \frac{1}{c} |\mathbf{v} \times \mathbf{E}| = \frac{q_0}{r^2} \cdot \frac{1 - \frac{v^2}{c^2}}{\left(\cos^2 \theta_{vr} + \left(1 - \frac{v^2}{c^2}\right) \sin^2 \theta_{vr}\right)^{\frac{3}{2}}} \frac{v}{c} \sin \theta_{vr}.$$
 (3.13)

3.3. Электрическое поле движущегося в системе отсчета S' электрического заряда. Общее преобразование электрического поля

Пусть теперь положительный пробный электрический заряд q_0 движется в системе отсчета *S* со скоростью *V* вместе с системой отсчета *S'* (пробный заряд q_0 расположен в системе отсчета *S'* на положительной оси *y'* на расстоянии r'_y от начала координат).
Источник поля q_0 , как и в прошлой задаче, пусть движется (вместе с системой отсчета S_0) в системе отсчета S со скоростью v (v > V) вдоль положительной оси x. Какое электрическое поле E'_y измерит движущийся наблюдатель S'?

Предположим, что в момент времени t' = 0 источник q_0 находится в начале координат системы отсчета S', а расстояние между зарядами q_0 равно r'_y . В системе отсчета S расстояние между зарядами равно $r_y = r'_y$, а их положение таково, что электрическое поле источника q_0 в точке наблюдения r_y , как и в прошлой задаче, направлено вдоль положительной оси y, а магнитное поле вдоль положительной оси z. Величины полей описываются выражениями (3.3), а сила, действующая на пробный электрический заряд со стороны источника, равна

$$f_{y} = \frac{q_{0}^{2} \left(1 - \frac{V}{c} \frac{v}{c}\right)}{r_{y}^{2} \sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

и направлена вдоль положительной оси У.

В соответствии с правилом преобразования силы (2.22) у-компонента силы в системе отсчета S' равна

$$f'_{y} = \frac{q_{0}^{2} \left(1 - \frac{V}{c} \frac{v}{c}\right)}{r_{y}^{2} \sqrt{1 - \frac{v^{2}}{c^{2}}} \sqrt{1 - \frac{V^{2}}{c^{2}}}} = \frac{q_{0}^{2} \left(1 - \frac{V}{c} \frac{v}{c}\right)}{r_{y}^{\prime 2} \sqrt{1 - \frac{v^{2}}{c^{2}}} \sqrt{1 - \frac{V^{2}}{c^{2}}},$$

которая также направлена вдоль положительной оси \mathcal{Y}' . С помощью преобразований (1.31) и (2.18) преобразуем эту формулу. В результате

$$f'_{y} = \frac{q_{0}^{2} \left(1 - \frac{V}{c} \frac{v'}{c}\right)}{r'_{y}^{2} \sqrt{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}}}$$

Эта сила является чисто электрической силой, и для у-составляющей электрического поля

можно написать

$$E'_{y} = \frac{q_{0}}{r'_{y}^{2}} \frac{\left(1 - \frac{V}{c} \frac{v'}{c}\right)}{\sqrt{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^{2} - \frac{{v'}^{2}}{c^{2}}}}.$$
(3.14)

Аналогичное выражение можно получить и для z-компоненты электрического поля, если бы пробный электрический заряд q_0 был бы расположен в системе отсчета S' на положительной оси z' на расстоянии r'_z от начала координат.

Таким образом, в теории анизотропного пространства электрическому заряду q_0 , движущемуся в системе отсчета S' со скоростью v' вдоль положительной оси x', соответствует в поперечном направлении наблюдения эффективный электрический заряд

равный $q' = q_0 \left(1 - \frac{V}{c} \frac{v'}{c} \right)$, являющийся источником электрического поля.

Остается выяснить, как преобразуется x-компонента электрического поля в направлении движения, когда пробный электрический заряд q_0 находится в системе отсчета S' на положительной оси x' на расстоянии r'_x от начала координат?

Расстояние между зарядами в системе отсчета S в момент времени t = 0 равно r_x , а х-компонента электрического поля источника q_0 равна (3.4). Сила, действующая на пробный заряд со стороны источника, равна

$$f_x = \frac{q_0^2}{r_x^2} \left(1 - \frac{v^2}{c^2} \right)$$

и направлена вдоль положительной оси *x*.

В соответствии с правилом преобразования силы (2.22) х-компонента силы в системе отсчета S' равна

$$f'_{x} = \frac{q_{0}^{2}}{r_{x}^{2}} \left(1 - \frac{v^{2}}{c^{2}}\right)^{r_{x} = r'_{x}\sqrt{1 - \frac{V^{2}}{c^{2}}}} = \frac{q_{0}^{2} \left(1 - \frac{v^{2}}{c^{2}}\right)}{r'_{x}^{2} \left(1 - \frac{V^{2}}{c^{2}}\right)}$$

и также направлена вдоль положительной оси x'. С помощью преобразования (1.31) преобразуем это выражение. В результате

$$f'_{x} = \frac{q_{0}^{2}}{r'_{x}^{2}} \left(\left(1 - \frac{V}{c} \frac{v'}{c} \right)^{2} - \frac{v'^{2}}{c^{2}} \right).$$

Эта сила является электрической силой, и для х-компоненты электрического поля можно написать

$$E'_{x} = \frac{q_{0}}{r'^{2}_{x}} \left(\left(1 - \frac{V}{c} \frac{v'}{c} \right)^{2} - \frac{v'^{2}}{c^{2}} \right).$$
(3.15)

Следовательно, в теории анизотропного пространства электрическому заряду q_0 , движущемуся в системе отсчета S' со скоростью v' вдоль положительной оси x', можно сопоставить в продольном направлении наблюдения эффективный электрический заряд $q' = q_0$, являющийся источником электрического поля.

Сравнивая между собой выражения (3.14), (3.15) и (3.4) находим, что компоненты электрического поля в системах отсчета S и S' в теории анизотропного пространства связаны преобразованием

$$E'_{x} = E_{x}, \quad E'_{y} = \frac{E_{y} - \frac{V}{c}B_{z}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad E'_{z} = \frac{E_{z} + \frac{V}{c}B_{y}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}.$$
(3.16)

Таким же преобразованием, как известно, связано электромагнитное поле в системах отсчета S и S' в СТО.

3.4. Магнитное (электрическое) поле движущегося в системе отсчета *S'* электрического заряда. Преобразование магнитного (электрического) поля

Пусть теперь положительный пробный электрический заряд q_0 движется в системе отсчета S вдоль положительной оси x со скоростью v_1 ($v_1 > V$). Источник q_0 , попрежнему, пусть движется (вдоль положительной оси x) со скоростью v (v > V), а система отсчета S' движется со скоростью V. Какое поле измерит движущийся наблюдатель S'?

В момент времени t' = t = 0 пробный заряд q_0 находится в системах отсчета S(S') на положительной оси y(y') на расстоянии $r_y(r'_y)$ от начала координат S(S'), а источник q_0 в начале координат S(S'). В системе отсчета S электрическое поле источника q_0 в точке наблюдения, как и в прошлой задаче, направлено вдоль положительной оси y, а магнитное поле вдоль положительной оси z. Величины полей описываются выражениями (3.3), а сила, действующая на пробный заряд со стороны источника, равна

$$f_{y} = \frac{q_{0}^{2} \left(1 - \frac{v_{1}}{c} \frac{v}{c}\right)}{r_{y}^{2} \sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

и направлена вдоль положительной оси У.

В соответствии с правилом преобразования силы (2.22) у-компонента силы в системе отсчета $S^\prime\,$ равна

$$f'_{y} = \frac{q_{0}^{2} \left(1 - \frac{v_{1}}{c} \frac{v}{c}\right)}{r_{y}^{2} \sqrt{1 - \frac{v^{2}}{c^{2}}} \sqrt{1 - \frac{V^{2}}{c^{2}}}} = \frac{q_{0}^{2} \left(1 - \frac{v_{1}}{c} \frac{v}{c}\right)}{r_{y}^{\prime 2} \sqrt{1 - \frac{v^{2}}{c^{2}}} \sqrt{1 - \frac{V^{2}}{c^{2}}}}$$

и также направлена вдоль положительной оси y'. С помощью преобразования скорости (1.9) с учетом (1.31) преобразуем это выражение. В результате

$$f'_{y} = \frac{q_{0}^{2} \left(\left(1 - \frac{V}{c} \frac{v'_{1}}{c}\right) \left(1 - \frac{V}{c} \frac{v'}{c}\right) - \frac{v'_{1}}{c} \frac{v'}{c} \right)}{r'_{y}^{2} \sqrt{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}}},$$

где v'_1 - скорость пробного заряда q_0 в системе отсчета S'.

Если теперь величинам $q_0 \left(1 - \frac{V}{c} \frac{v'}{c} \right)$ и $q_0 \left(1 - \frac{V}{c} \frac{v'_1}{c} \right)$, как и в прошлой задаче, придать

смысл эффективных поперечных электрических зарядов источника q_0 и пробного заряда

 q_0 , то у-компонента электрического поля движущегося в системе отсчета S^\prime

электрического заряда q_0 со скоростью v' будет описываться, как и в прошлой задаче, формулой (3.14). Оставшаяся часть выражения

$$f'_{y} = -\frac{q_{0}^{2} \frac{v'_{1} v'}{c}}{r'_{y}^{2} \sqrt{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^{2} - \frac{{v'}^{2}}{c^{2}}}}$$

очевидно, будет описывать магнитную силу, действующую в системе отсчета S' на движущийся со скоростью v'_1 пробный заряд q_0 со стороны движущегося со скоростью v' источника q_0 . Таким образом, для z-компоненты магнитного поля можно написать

$$B'_{z} = \frac{q_{0}}{r_{y}^{\prime 2}} \frac{1}{\sqrt{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}}} \frac{v'}{c} .$$
(3.17)

Аналогичное выражение можно получить и для у-компоненты поля B'_y . Оно будет точно таким же (кроме различия в знаке), если бы в момент времени t' = t = 0 пробный электрический заряд q_0 находился на положительной оси z(z') системы отсчета S(S') на расстоянии $r_z(r'_z)$ от начала координат S(S').

Сравнивая теперь между собой выражения (3.17) и (3.3) и принимая, что хкомпонента магнитного поля, как и х-компонента электрического поля при преобразовании не меняется, для преобразования магнитного поля получаем

$$B'_{x} = B_{x}, \quad B'_{y} = \frac{B_{y} + \frac{V}{c}E_{z}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad B'_{z} = \frac{B_{z} - \frac{V}{c}E_{y}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad (3.18)$$

а для обратного преобразования магнитного поля с учетом (3.16) получаем

$$B_{x} = B'_{x}, \quad B_{y} = \frac{B'_{y} - \frac{V}{c}E'_{z}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad B_{z} = \frac{B'_{z} + \frac{V}{c}E'_{y}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}.$$
(3.19)

Для обратного преобразования электрического поля, очевидно, справедливо

$$E_{x} = E'_{x}, \quad E_{y} = \frac{E'_{y} + \frac{V}{c}B'_{z}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad E_{z} = \frac{E'_{z} - \frac{V}{c}B'_{y}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}.$$
(3.20)

Модули векторов E и E' в системах отсчета S и S', очевидно, связаны преобразованиями

$$E' = E \sqrt{\cos^2 \theta + \left(1 - \frac{V}{c} \frac{v}{c}\right)^2 \frac{\sin^2 \theta}{\left(1 - \frac{V^2}{c^2}\right)}}$$
(3.21)

И

$$E = E' \sqrt{\cos^2 \theta' + \frac{\sin^2 \theta'}{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 \left(1 - \frac{V^2}{c^2}\right)}},$$
 (3.22)

а углы θ и θ' между векторами *E* и *E'* и положительными осями *x* и *x'* (вектором *V*)

$$\cos\theta' = \frac{\cos\theta}{\sqrt{\cos^2\theta + \left(1 - \frac{V}{c}\frac{v}{c}\right)^2 \frac{\sin^2\theta}{\left(1 - \frac{V^2}{c^2}\right)}}}$$
(3.23)

И

$$\cos\theta = \frac{\cos\theta'}{\sqrt{\cos^2\theta' + \frac{\sin^2\theta'}{\left(1 - \frac{V}{c}\frac{v'}{c}\right)^2 \left(1 - \frac{V^2}{c^2}\right)}}}.$$
(3.24)

Направление вектора E' в общем случае, как видно, не совпадает с направлением радиусвектора r' наблюдения. Однако при v' << V и V << c этим различием можно пренебречь.

Найдем теперь конфигурацию электрического поля электрического заряда q_0 , наблюдаемую в системе отсчета S'. В системе отсчета S конфигурация электрического поля заряда q_0 имеет вид (3.11). С помощью преобразований (1.5) и (1.7) при t' = 0, (1.31) и (3.22) преобразуем это выражение. В результате

$$E' = \frac{q'}{r'^2} \frac{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}}{\left(\cos^2 \theta' + \left(\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}\right)\sin^2 \theta'\right)^{3/2}},$$

rge $q' = q_0 \left(1 - \frac{V}{c} \frac{v'}{c}\right) \frac{\sqrt{\left(1 - \frac{V^2}{c^2}\right)\cos^2 \theta' + \sin^2 \theta'}}{\sqrt{\left(1 - \frac{V^2}{c^2}\right)\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 \cos^2 \theta' + \sin^2 \theta'}}.$

В общем случае, очевидно,

$$E' = \frac{q'}{r'^2} \frac{\left(1 - \frac{V}{c} \frac{\mathbf{v}'}{c}\right)^2 - \frac{{v'}^2}{c^2}}{\left(\cos^2\theta'_{vr} + \left(\left(1 - \frac{V}{c} \frac{\mathbf{v}'}{c}\right)^2 - \frac{{v'}^2}{c^2}\right)\sin^2\theta'_{vr}\right)^{\frac{3}{2}}},$$
(3.25)
где $q' = q_0 \left(1 - \frac{V}{c} \frac{\mathbf{v}'}{c}\right) \frac{\sqrt{\left(1 - \frac{V^2}{c^2}\right)\cos^2\theta'_{vr} + \sin^2\theta'_{vr}}}{\sqrt{\left(1 - \frac{V^2}{c^2}\right)\left(1 - \frac{V}{c} \frac{\mathbf{v}'}{c}\right)^2\cos^2\theta'_{vr} + \sin^2\theta'_{vr}}},$ - угол между вектором
 ψ'

и радиус-вектором r' наблюдения.

Конфигурация магнитного поля заряда q_0 в системе отсчета S', очевидно, имеет вид

$$B' = \frac{q_0}{r'^2} \frac{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}}{\left(\cos^2\theta'_{vr} + \left(\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}\right)\sin^2\theta'_{vr}\right)^{\frac{3}{2}}} \frac{v'}{c}\sin\theta'_{vr}.$$
(3.26)

Таким образом, в теории анизотропного пространства электрическому заряду q_0 , движущемуся в системе отсчета S' со скоростью v', соответствует в общем случае

электрический заряд равный $q' = q_0 \left(1 - \frac{V}{c} \frac{v'}{c}\right) \frac{\sqrt{\left(1 - \frac{V^2}{c^2}\right) \cos^2 \theta'_{vr} + \sin^2 \theta'_{vr}}}{\sqrt{\left(1 - \frac{V^2}{c^2}\right) \left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 \cos^2 \theta'_{vr} + \sin^2 \theta'_{vr}}},$

являющийся источником электрического поля. Это совершенно новое теоретическое явление анизотропного характера, допускающее экспериментальную проверку и позволяющее, таким образом, измерить абсолютную скорость Земли (системы отсчета S') относительно пространства находясь в системе отсчета S'.

Как показывают оценки, вокруг проводника с электрическим током (при малых токах) должно наблюдаться (помимо магнитного поля) в этом случае электрическое поле, равное приблизительно

$$E' \approx \frac{2\lambda'}{r'} \frac{V}{c} \frac{v'}{c} q_0$$

где λ' – линейная плотность электронов проводимости, r' - расстояние от ближайшей точки проводника до точки наблюдения, v' - скорость дрейфа электронов, V - скорость системы отсчета S' (в данном случае Земли) относительно абсолютного пространства.

3.5. Косвенные доказательства существования электрического поля вокруг проводника с электрическим током

Косвенным доказательством существования электрического поля вокруг проводника с электрическим током является, как известно, эффект Баурова [4,5]. Эффект Баурова заключается в том, что масса, будучи в апертуре соленоида вблизи обмотки с электрическим током, отталкивается от той части обмотки, где скорость электронов имеет существенную компоненту, направленную в некотором направлении в пространстве, совпадающем в пределах погрешности измерения с направлением движения Земли относительно микроволнового фонового излучения Вселенной.

Еще одним косвенным доказательством существования электрического поля вокруг проводника с электрическим током является эффект Ааронова-Бома [17]. Эффект Ааронова-Бома заключается в том, что поток движущихся отрицательных электронов искривляется вблизи соленоида с электрическим током при его обтекании и происходит

смещение интерференционной картины, показывая, тем самым, что вокруг соленоида с электрическим током существует электрическое поле.

3.6. 4-вектор потенциал. Преобразование потенциала. Потенциал Льенара-Вихерта

Здесь и в двух последующих параграфах будет использоваться материал [19]. Как известно, для решения системы уравнений Максвелла (методом запаздывающих потенциалов) в системе отсчета *S* вводятся векторный *A* и скалярный [©] потенциалы, которые в гауссовой системе единиц удовлетворяют волновым уравнениям Даламбера

$$\left[\nabla_{c}^{2} - \frac{\partial^{2}}{\partial(ct)^{2}}\right] \boldsymbol{A} = -\frac{4\pi}{c} \boldsymbol{j}, \quad \left[\nabla_{c}^{2} - \frac{\partial^{2}}{\partial(ct)^{2}}\right] \boldsymbol{\varphi} = -4\pi \,\boldsymbol{\rho}$$
(3.27)

с правыми частями, содержащими плотность *j* тока и плотность *β* заряда. На волновые уравнения (3.27) накладывается так называемое условие калибровки Лоренца

$$\nabla_{c} \mathbf{A} + \frac{\partial}{\partial (ct)} \varphi = 0.$$
(3.28)

Объединим векторный *А* и скалярный ⁰ потенциалы в один. В результате

$$\boldsymbol{\Phi} = (\Phi_1, \Phi_2, \Phi_3, \Phi_4) = (\boldsymbol{A}, \boldsymbol{i}\varphi)$$

4- вектором потенциала в системе отсчета S' является, очевидно,

$$\boldsymbol{\Phi}' = \left(\Phi'_{1}, \Phi'_{2}, \Phi'_{3}, \Phi'_{4}\right) = \left(\boldsymbol{A}', i\varphi'\right).$$

И введем световые четырехмерные дифференциальные операторы

$$\boldsymbol{D}_{c} = (D_{c1}, D_{c2}, D_{c3}, D_{c4}) = \left(\frac{\partial}{\partial R_{c1}}, \frac{\partial}{\partial R_{c2}}, \frac{\partial}{\partial R_{c3}}, \frac{\partial}{\partial R_{c4}}\right) = \left(\nabla_{c}, \frac{\partial}{\partial (ict)}\right)$$

И

$$\boldsymbol{D}_{c}' = (D_{c1}', D_{c2}', D_{c3}', D_{c4}') = \left(\frac{\partial}{\partial R_{c1}'}, \frac{\partial}{\partial R_{c2}'}, \frac{\partial}{\partial R_{c3}'}, \frac{\partial}{\partial R_{c4}'}\right) = \left(\nabla_{c}', \frac{\partial}{\partial (ic't')}\right),$$

где $\nabla_c = \left(\frac{\partial}{\partial x_c}, \frac{\partial}{\partial y_c}, \frac{\partial}{\partial z_c}\right), \quad \nabla'_c = \left(\frac{\partial}{\partial x'_c}, \frac{\partial}{\partial y'_c}, \frac{\partial}{\partial z'_c}\right) - oбычные трехмерные операторы. Тогда$

волновые уравнения Даламбера (3.27) в четырехмерной форме записываются как

$$\boldsymbol{D}_c^2\boldsymbol{\Phi}=-\frac{4\pi}{c}\boldsymbol{J},$$

где в качестве источника (правая часть уравнения) выступает 4-вектор тока

$$\boldsymbol{J} = (J_1, J_2, J_3, J_4) = \boldsymbol{U}\rho_0 = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} (\boldsymbol{v}\rho_0, ic\rho_0) = (\boldsymbol{j}, ic\rho),$$

а калибровка Лоренца (3.28) как

$$\boldsymbol{D}_{c}\boldsymbol{\Phi}=0$$

Волновые уравнения Даламбера в системе отсчета S', очевидно, записываются как

$$\boldsymbol{D}_{c}^{\prime 2}\boldsymbol{\Phi}^{\prime}=-\frac{4\pi}{c}\boldsymbol{J}^{\prime},$$

где в качестве источника (правая часть уравнения) выступает 4-вектор тока

$$\boldsymbol{J}' = (J_1', J_2', J_3', J_4') = \boldsymbol{U}' \boldsymbol{\rho}_0 = \frac{1}{\sqrt{\left(1 - \frac{\boldsymbol{V}}{c} \frac{\boldsymbol{v}'}{c}\right)^2 - \frac{{v'}^2}{c^2}}} \left(\boldsymbol{v}' \boldsymbol{\rho}_0, \quad i \left(1 - \frac{\boldsymbol{V}}{c} \frac{\boldsymbol{v}'}{c}\right) c \boldsymbol{\rho}_0\right) = (\boldsymbol{j}', \quad i c \boldsymbol{\rho}')$$

а калибровка Лоренца

$$\boldsymbol{D}_{c}^{\prime}\boldsymbol{\Phi}^{\prime}=0$$

В явном виде это переписывается как

$$\left[\nabla_{c}'^{2} - \frac{\partial^{2}}{\partial(c't')^{2}}\right]\mathbf{A}' = -\frac{4\pi}{c}\mathbf{j}', \quad \left[\nabla_{c}'^{2} - \frac{\partial^{2}}{\partial(c't')^{2}}\right]\phi' = -4\pi\rho'$$

И

$$\nabla ' \mathbf{A}' + \frac{\partial}{\partial (c't')} \varphi' = \mathbf{0}$$

Если источником запаздывающего потенциала является точечный электрический заряд q_0 , находящийся в начальный момент времени в начале координат S(S'), то 4-вектором потенциала Льенара-Вихерта в системе отсчета S является

$$\boldsymbol{\Phi} = -q_0 \frac{\boldsymbol{U}}{\boldsymbol{U}\boldsymbol{R}_c},$$

где $R_c = (r_c, ict)$ - 4-вектор события регистрации поля, в системе отсчета S'

$$\boldsymbol{\Phi}' = -q_0 \frac{\boldsymbol{U}'}{\boldsymbol{U}'\boldsymbol{R}_c'},$$

где $\mathbf{R}'_c = (\mathbf{r}'_c, ic't')$ - 4-вектор события регистрации поля в системе отсчета S'. В развернутом виде это переписывается как

$$\boldsymbol{A} = \frac{q_0 \boldsymbol{v}}{c \left(r_c - \frac{\boldsymbol{v} \boldsymbol{r}_c}{c}\right)}, \quad \boldsymbol{\varphi} = \frac{q_0}{\left(r_c - \frac{\boldsymbol{v} \boldsymbol{r}_c}{c}\right)}$$
(3.29)

И

$$\boldsymbol{A}' = \frac{q_0 \boldsymbol{v}'}{\left(1 - \frac{\boldsymbol{V}}{c} \frac{\boldsymbol{v}'}{c}\right) c \left(r_c' - \frac{\boldsymbol{v}' r_c'}{\left(1 - \frac{\boldsymbol{V}}{c} \frac{\boldsymbol{v}'}{c}\right) c}\right)}, \quad \boldsymbol{\phi}' = \frac{q_0}{\left(r_c' - \frac{\boldsymbol{v}' r_c'}{\left(1 - \frac{\boldsymbol{V}}{c} \frac{\boldsymbol{v}'}{c}\right) c}\right)}.$$
(3.30)

Оператор **D**_c, очевидно, преобразуется матрицами преобразования Лоренца (1.39) и (1.40). Из (3.29) и (3.30) вытекает, что и 4-вектор потенциал также преобразуется матрицами преобразования Лоренца (1.39) и (1.40). В развернутом виде это переписывается как

$$A'_{x} = \frac{A_{x} - \frac{V}{c}\varphi}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad A'_{y} = A_{y}, \quad A'_{z} = A_{z}, \quad \varphi' = \frac{\varphi - \frac{V}{c}A_{x}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}$$
(3.31)

И

$$A_{x} = \frac{A'_{x} + \frac{V}{c}\varphi'}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad A_{y} = A'_{y}, \quad A_{z} = A'_{z}, \quad \varphi = \frac{\varphi' + \frac{V}{c}A'_{x}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}.$$
(3.32)

Очевидно, 4-вектор тока также преобразовывается матрицами преобразования Лоренца (1.39) и (1.40). В развернутом виде это переписывается как

$$j'_{x} = \frac{j_{x} - \frac{V}{c}c\rho}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad j'_{y} = j_{y}, \quad j'_{z} = j_{z}, \quad c\rho' = \frac{c\rho - \frac{V}{c}j_{x}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}$$

И

$$j_{x} = \frac{j'_{x} + \frac{V}{c}c\rho'}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad j_{y} = j'_{y}, \quad j_{z} = j'_{z}, \quad c\rho = \frac{c\rho' + \frac{V}{c}j'_{x}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}.$$

3.7. Функция Лагранжа для электрического заряда в электромагнитном поле

В системе отсчета S, как известно, действие для электрического заряда q_0 в электромагнитном поле имеет вид

$$\int_{a}^{b} \left(im_{0}cds + \frac{q_{0}}{c} \Phi_{i}dR_{i} \right) = \int_{t_{1}}^{t_{2}} \left(-m_{0}c^{2}\sqrt{1 - \frac{v^{2}}{c^{2}}} + \frac{q_{0}}{c}Av - q_{0}\varphi \right) dt,$$

где m_0 - собственная масса заряда, а интеграл берется вдоль мировой линии между двумя заданными событиями a и b – нахождением частицы в начальном и конечном местах в определенные моменты времени t_1 и t_2 , подынтегральное выражение которого есть функция Лагранжа для заряда в электромагнитном поле

$$L = -m_0 c^2 \sqrt{1 - \frac{v^2}{c^2}} + \frac{q_0}{c} A v - q_0 \phi . \qquad (3.33)$$

В системе отсчета S' действие для электрического заряда q_0 в электромагнитном поле, очевидно, имеет вид

$$\int_{a}^{b} \left(im_{0}cds' + \frac{q_{0}}{c} \Phi_{i}'dR_{i}' \right) = \int_{t_{1}'}^{t_{2}'} \left(-m_{0}c^{2}\sqrt{\left(1 - \frac{V}{c}\frac{v'}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}} + \frac{q_{0}}{c}A'v' - q_{0}\varphi'\left(1 - \frac{V}{c}\frac{v'}{c}\right) \right) dt',$$

где m_0 - собственная масса заряда, а интеграл берется вдоль мировой линии между двумя заданными событиями a и b – нахождением частицы в начальном и конечном местах в определенные моменты времени t'_1 и t'_2 , подынтегральное выражение которого, очевидно, есть функция Лагранжа для заряда в электромагнитном поле

$$L' = -m_0 c^2 \sqrt{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 - \frac{{v'}^2}{c^2} + \frac{q_0}{c} A' v' - q_0 \varphi' \left(1 - \frac{V}{c} \frac{v'}{c}\right)}.$$
(3.34)

3.8. Уравнение движения электрического заряда в электромагнитном поле

Уравнения движения заряда в системах отсчета S и S', как известно, даются уравнениями Лагранжа

$$\frac{d}{dt}\frac{\partial L}{\partial v} = \frac{\partial L}{\partial r}$$

И

$$\frac{d}{dt'}\frac{\partial L'}{\partial v'} = \frac{\partial L'}{\partial r'}.$$

Производные $\frac{\partial L}{\partial v}$ и $\frac{\partial L'}{\partial v'}$, очевидно, есть обобщенные импульсы заряда q_0

$$\boldsymbol{P} = \frac{\partial L}{\partial \boldsymbol{v}} = \boldsymbol{p} + \frac{q_0}{c} \boldsymbol{A}$$

И

$$\boldsymbol{P}' = \frac{\partial L'}{\partial \boldsymbol{v}'} = \boldsymbol{p}' + \frac{q_0}{c} \left(\boldsymbol{A}' + \frac{\boldsymbol{V}}{c} \boldsymbol{\varphi}' \right).$$

Производные $\frac{\partial L}{\partial r}$ и $\frac{\partial L'}{\partial r'}$ есть

$$\frac{\partial L}{\partial \boldsymbol{r}} = \frac{q_0}{c} \left(\boldsymbol{v} \frac{\partial}{\partial \boldsymbol{r}} \right) \boldsymbol{A} + \frac{q_0}{c} [\boldsymbol{v} \operatorname{rot} \boldsymbol{A}] - q_0 \frac{\partial \varphi}{\partial \boldsymbol{r}}$$

И

$$\frac{\partial L'}{\partial \boldsymbol{r}'} = \frac{q_0}{c} \left(\boldsymbol{v}' \frac{\partial}{\partial \boldsymbol{r}'} \right) \boldsymbol{A}' + \frac{q_0}{c} [\boldsymbol{v}' \operatorname{rot} \boldsymbol{A}'] - q_0 \left(1 - \frac{\boldsymbol{V}}{c} \frac{\boldsymbol{v}'}{c} \right) \frac{\partial \varphi'}{\partial \boldsymbol{r}'},$$

откуда для уравнений Лагранжа получаем

$$\frac{d}{dt}\left(\mathbf{p}+\frac{q_0}{c}\mathbf{A}\right)=\frac{q_0}{c}\left(\mathbf{v}\frac{\partial}{\partial \mathbf{r}}\right)\mathbf{A}+\frac{q_0}{c}[\mathbf{v}\operatorname{rot}\mathbf{A}]-q_0\frac{\partial \varphi}{\partial \mathbf{r}}$$

И

$$\frac{d}{dt'}\left(\mathbf{p}'+\frac{q_0}{c}\left(\mathbf{A}'+\frac{\mathbf{V}}{c}\mathbf{\varphi}'\right)\right)=\frac{q_0}{c}\left(\mathbf{v}'\frac{\partial}{\partial\mathbf{r}'}\right)\mathbf{A}'+\frac{q_0}{c}[\mathbf{v}'\operatorname{rot}\mathbf{A}']-q_0\left(1-\frac{\mathbf{V}}{c}\frac{\mathbf{v}'}{c}\right)\frac{\partial\mathbf{\varphi}'}{\partial\mathbf{r}'}.$$

Так как

$$\frac{d}{dt}\left(\frac{q_0}{c}A\right) = q_0 \frac{\partial A}{\partial (ct)} + \frac{q_0}{c} \left(\mathbf{v}\frac{\partial}{\partial \mathbf{r}}\right) A$$

$$\frac{d}{dt'}\left(\frac{q_0}{c}\left(\mathbf{A}'+\frac{\mathbf{V}}{c}\mathbf{\varphi}'\right)\right) = q_0 \frac{\partial \mathbf{A}'}{\partial (ct')} + \frac{q_0}{c}\left(\mathbf{v}'\frac{\partial}{\partial \mathbf{r}'}\right)\mathbf{A}' + q_0 \frac{\mathbf{V}}{c}\frac{\partial \mathbf{\varphi}'}{\partial (ct')},$$

то, подставляя это в предыдущие уравнения, получаем

$$\frac{d\boldsymbol{p}}{dt} = -\frac{q_0}{c}\frac{\partial \boldsymbol{A}}{\partial t} - q_0\frac{\partial \boldsymbol{\varphi}}{\partial \boldsymbol{r}} + \frac{q_0}{c}[\boldsymbol{v} \operatorname{rot} \boldsymbol{A}]$$

И

$$\frac{d\mathbf{p}'}{dt'} = -\frac{q_0}{c} \frac{\partial \left(\mathbf{A}' + \varphi' \frac{\mathbf{V}}{c}\right)}{\partial t'} - q_0 \left(1 - \frac{\mathbf{V}}{c} \frac{\mathbf{v}'}{c}\right) \frac{\partial \varphi'}{\partial \mathbf{r}'} + \frac{q_0}{c} [\mathbf{v}' \operatorname{rot} \mathbf{A}']$$

Это и есть уравнения движения электрического заряда *q*₀ в электромагнитном поле. Слева стоит производная от импульса заряда по времени, выражение в правой части есть сила, действующая на заряд в электромагнитном поле.

Глава 4. Оптика

4.1. Идентичность явления дифракции и интерференции света в теории анизотропного пространства и в СТО

Дифракцией (интерференцией) света называется совокупность явлений в оптике обусловленных волновой природой света, это когда в результате наложения когерентных волн, линейно поляризованных в одной плоскости, происходит ослабление или усиление интенсивности света в зависимости от соотношения фаз складываемых волн. Дифракция света, как показывает опыт, не зависит от ориентации складываемых волн в пространстве. Все направления в пространстве по отношению к дифракции равноправны.

Однако в теории анизотропного пространства скорость света в системе отсчета S' анизотропна и может показаться на первый взгляд, что это должно влиять на дифракцию света. Тем не менее, как будет показано, анизотропия скорости света не влияет на дифракцию. Действительно, предположим, что в системе отсчета S' на расстоянии a слева от щелей O_1 и O_2 в точке O находится точечный источник света (рис.1).

И

На расстоянии b справа от щелей, предположим, расположен непрозрачный экран. Расстояние между щелями O_1 и O_2 равно d (штрихи для сокращения записи опущены), а ось x анизотропии пространства лежит в плоскости рисунка и составляет с оптической осью угол θ .

В соответствии с принципом Гюйгенса-Френеля освещаемые источником O щелевые отверстия O_1 и O_2 являются источниками вторичных элементарных волн. Расстояния OO_1 , OO_2 , O_1O_2 , O_1O_3 , O_2O_3 и углы α , φ_1 , φ_2 связаны с параметрами a, b, d и h, где h – расстояние от оптической оси схемы (штрих пунктирной линии) до точки наблюдения O_3 , соотношениями:

$$O_1O_2 = d, \quad \alpha = \arctan\frac{d}{2a}, \quad \varphi_1 = \arctan\frac{h + d/2}{b}, \quad \varphi_2 = \arctan\frac{h - d/2}{b},$$
$$OO_1 = OO_2 = \frac{a}{\cosh \alpha}, \quad O_2O_3 = \frac{b}{\cosh \alpha}, \quad O_1O_3 = \frac{b}{\cosh \alpha}, \quad O_1O_3 = \frac{b}{\cosh \alpha}.$$

Скорость c' света в направлении OO_1 согласно (1.18) равна:

$$c' = \frac{c}{1 + \frac{V}{c}\cos\left(\theta - \arctan\frac{d}{2a}\right)}, \text{ в направлении} \qquad : c' = \frac{c}{1 + \frac{V}{c}\cos\left(\theta + \arctan\frac{d}{2a}\right)}, \text{ в направлении}$$

направлении

$$C' = \frac{c}{1 + \frac{V}{c} \cos\left(\theta + \arctan\frac{h + d/2}{b}\right)}$$
, в направлении
 O_2O_3 :

$$c' = \frac{c}{1 + \frac{V}{c} \cos\left(\theta + \arctan\frac{h - d/2}{b}\right)}.$$

Время распространения света из точки О в точку О3 по трассе ОО1О3 составляет

$$t_{1} = \frac{a}{c} \frac{1 + \frac{V}{c} \cos\left(\theta - \arctan\frac{d}{2a}\right)}{\cos \arctan\frac{d}{2a}} + \frac{b}{c} \frac{1 + \frac{V}{c} \cos\left(\theta + \arctan\frac{h + d/2}{b}\right)}{\cos \arctan\frac{h + d/2}{b}},$$

а по трассе ОО₂О₃

$$t_{2} = \frac{a}{c} \frac{1 + \frac{V}{c} \cos\left(\theta + \arctan\frac{d}{2a}\right)}{\cos \arctan\frac{d}{2a}} + \frac{b}{c} \frac{1 + \frac{V}{c} \cos\left(\theta + \arctan\frac{h - d/2}{b}\right)}{\cos \arctan\frac{h - d/2}{b}}.$$

Разность Δt равна:

$$\Delta t = t_1 - t_2 = \frac{1}{c} \left(\sqrt{b^2 + h^2 + hd + \frac{d^2}{4}} - \sqrt{b^2 + h^2 - hd + \frac{d^2}{4}} \right).$$
(4.1)

Такой же результат, как известно, получается в СТО. Это и доказывает идентичность явления дифракции света в теории анизотропного пространства и в СТО.

4.2. Идентичность явления отражения света в теории анизотропного пространства и в СТО

При падении световой волны на идеальную плоскую поверхность зеркала, размеры которого значительно превышают длину волны, происходит, как известно, отражение света. Угол k между направлением распространения отраженной волны и нормалью к границе раздела зеркала (угол отражения), как показывает опыт, равен по абсолютной величине соответствующему углу i для падающей волны

$$\frac{\sin i}{\sin k} = 1. \tag{4.2}$$

Этот закон, очевидно, остается справедливым и в теории анизотропного пространства.

Действительно, предположим, что в системе отсчета S' распространяется тонкий пучок света под углом θ_i (штрихи для сокращения записи опущены) к направлению предполагаемой оси x анизотропии пространства и падает на идеальную плоскую поверхность зеркала O_3O_4 , расположенную под углом φ ($0^\circ < \varphi < 90^\circ$) к направлению распространения падающего пучка света, и отражается (рис.2).

В точке O пучок расширяется (в перпендикулярном направлении) до ширины $O_1O_2 = 2h$. Под каким углом α к поверхности раздела отразится пучок?

Скорость падающего пучка света согласно (1.18) равна

$$c_i = \frac{c}{1 + \frac{V}{c} \cos \theta_i}, \qquad (4.3)$$

скорость отраженного пучка

$$c_k = \frac{c}{1 + \frac{V}{c} \cos \theta_k} \tag{4.4}$$

 $(\phi + \theta_i < \theta_k < \phi + \theta_i + 180^\circ)$. В точке *О* лучи 1 и 2 в момент расширения

распространяются со скоростью

$$c_{\perp 1,2} = \frac{c}{1 + \frac{V}{c}\cos(\theta_{i} \mp 90^{\circ})} = \frac{c}{1 \pm \frac{V}{c}\sin\theta_{i}},$$
(4.5)

где индекс " \perp 1"- соответствует лучу 1, расширяющемуся перпендикулярно вниз под углом $\theta_{\perp 1} = \theta_i - 90^\circ$ к оси анизотропии пространства, а индекс " \perp 2"- соответствует лучу 2, расширяющемуся перпендикулярно вверх под углом $\theta_{\perp 2} = \theta_i + 90^\circ$. Время

распространения лучей 1 и 2 из точки ${\cal O}$ в точки ${\cal O}_3$ и ${\cal O}_4$ составляет

$$t_1 = \frac{OO_1}{c_{\perp 1}} + \frac{O_1O_3}{c_i}, \quad t_2 = \frac{OO_2}{c_{\perp 2}} + \frac{O_1O_3}{c_i} + \frac{O_3O_4\cos\varphi}{c_i}, \quad (4.6)$$

откуда для разности Δt получаем

$$\Delta t = t_2 - t_1 = \frac{OO_2}{c_{\perp 2}} + \frac{O_3 O_4 \cos \varphi}{c_i} - \frac{OO_1}{c_{\perp 1}}.$$
(4.7)

Так как $OO_1 = OO_2 = h$, $O_3O_4 = 2h/\sin \phi$, формула (4.7) с учетом (4.3) и (4.5) перепишется

$$\Delta t = \frac{2h}{c} \frac{\cos \varphi + \frac{V}{c} \cos(\theta_i + \varphi)}{\sin \varphi}.$$
(4.8)

Согласно гипотезе Гюйгенса-Френеля поверхность зеркала является источником вторичных элементарных волн. Радиус O_3O_5 вторичной волны луча 1 в момент времени t_2 согласно (4.4) и (4.8) равен

$$O_3O_5 = c_k \Delta t = \frac{2h}{1 + \frac{V}{c}\cos\theta_k} \frac{\cos\varphi + \frac{V}{c}\cos(\theta_i + \varphi)}{\sin\varphi},$$

радиус O_4O_4 вторичной волны луча 2 равен нулю. Направление распространения огибающей O_4O_5 вторичных волн, испускаемых поверхностью зеркала, определяет направление распространения отраженного пучка. Нужно найти в образованном треугольнике $O_3O_4O_5$ угол α, соответствующий максимуму угла γ .

Углы α и γ в треугольнике $O_3O_4O_5$ связаны теоремой косинусов:

$$\begin{cases} (O_3O_5)^2 = (O_4O_5)^2 + (O_3O_4)^2 - 2(O_4O_5)(O_3O_4)\cos\gamma, \\ (O_4O_5)^2 = (O_3O_5)^2 + (O_3O_4)^2 - 2(O_3O_5)(O_3O_4)\cos\alpha, \end{cases}$$

откуда заменив α на $\alpha = \theta_k - \theta_i - \phi$ находим функцию угла γ :

$$\gamma = \arccos \frac{\frac{1}{\sin \varphi} - \frac{\cos \varphi + \frac{V}{c} \cos(\theta_i + \varphi)}{\sin \varphi \left(1 + \frac{V}{c} \cos \theta_k\right)} \cos(\theta_k - \theta_i - \varphi)}{\sqrt{\left(\frac{1}{\sin \varphi}\right)^2 - 2 \frac{\cos \varphi + \frac{V}{c} \cos(\theta_i + \varphi)}{\sin \varphi \left(1 + \frac{V}{c} \cos \theta_k\right)} \cos(\theta_k - \theta_i - \varphi) + \left(\frac{\cos \varphi + \frac{V}{c} \cos(\theta_i + \varphi)}{\sin \varphi \left(1 + \frac{V}{c} \cos \theta_k\right)}\right)^2}$$

Как показывают расчеты, максимум этой функции γ достигается при угле θ_k , удовлетворяющем соотношению $\theta_k = \theta_i + 2\varphi$. Сравнив это выражение с соотношением $\alpha = \theta_k - \theta_i - \varphi$ получаем $\alpha = \varphi$, откуда (4.2). Такой же результат, как известно, получается в СТО. Это и доказывает идентичность явления отражения света в теории анизотропного пространства и в СТО.

4.3. Скорость света в среде. Идентичность явления преломления света в теории анизотропного пространства и в СТО

При падении световой волны на плоскую границу раздела двух сред с разными значениями относительной диэлектрической проницаемости световая волна, как известно, частично отражается и частично преломляется. Угол ^{*r*} между направлением распространения преломленной волны и нормалью к границе раздела двух сред (угол преломления) и угол падения ^{*i*} связаны между собой законом Снеллиуса

$$\frac{\sin i}{\sin r} = n, \qquad (4.9)$$

где *n* – показатель преломления среды. Этот же закон, очевидно, остается справедливым и в теории анизотропного пространства.

Действительно, пусть скорость света c' в ваккуме в системе отсчета S' равна (1.18). Скорость света c'_n в среде с показателем преломления *n*, очевидно, будет складываться (см., например, [13]) из времени распространения света (со скоростью c') от одного атома к другому и времени τ' , в течение которого свет находится в связанном состоянии с атомом, определяемым временем перехода электрона в возбужденное состояние и обратно. Если обозначить через L'_0 среднее расстояние между атомами, то можно написать

$$\frac{L'_0}{c'_n} = \frac{L'_0}{c'} + \tau'$$

Подставив сюда скорость света c' из (1.18) и решив относительно c'_n , получаем

$$c'_{n} = \frac{c}{1 + \frac{c\tau'}{L'_{0}} + \frac{V}{c}\cos\theta'_{n}} = \frac{c}{n + \frac{V}{c}\cos\theta'_{n}}, \qquad (4.10)$$

где $n = 1 + \frac{ct'}{L'_0}$ - константа, характеризующая среду и называемая показателем

преломления среды.

Отношением скорости света в вакууме к скорости света в среде является

$$\frac{c'}{c'_n} = \frac{n + \frac{V}{c}\cos\theta'}{1 + \frac{V}{c}\cos\theta'}.$$

Это отношение в разных направлениях различно. Однако, тем не менее, разность времен распространения света в вакууме и в среде не зависит от направления в пространстве

$$\Delta t' = \frac{l'}{c'_n} - \frac{l'}{c'} = \frac{l'(n-1)}{c}$$

Отсюда, таким образом, следует, что никакие эксперименты типа [20,21], основанные на использовании сред с отличным от единицы показателем преломления (см., например, [22]), не позволяют определить абсолютное состояние движения системы отсчета S' относительно пространства.

Теперь предположим, что в системе отсчета S' распространяется тонкий пучок света под углом θ_i (штрихи для сокращения записи опущены) к предполагаемой оси x анизотропии пространства и падает на плоскую поверхность раздела O_3O_4 двух сред

(вакуум-среда), ориентированную под углом ^{*ф*} к направлению распространения падающего пучка света, и преломляется (рис. 3).

В точке O для простоты пучок расширяется (в перпендикулярном направлении) до ширины $O_1O_2 = 2h$. Под каким углом θ_n к предполагаемой оси анизотропии пространства (или под каким углом ψ к поверхности раздела) преломится пучок в среде?

Согласно гипотезе Гюйгенса-Френеля граница раздела вакуум-среда является источником вторичных элементарных волн. Скорость распространения вторичных волн в среде равна (4.10) (здесь $\varphi + \theta_i - 180^\circ < \theta_n < \varphi + \theta_i$), а направление распространения огибающей (линии O_4O_5) вторичных волн (угол θ_n , или если рассматривать по отношению к поверхности раздела сред, угол Ψ) определяет направление распространения распространения в среде.

Лучи 1 и 2 в точке О расширяются в соответствии с формулой (4.3) со скоростью

$$c_{\perp 1,2} = \frac{c}{1 + \frac{V}{c}\cos(\theta_i \mp 90^\circ)} = \frac{c}{1 \pm \frac{V}{c}\sin\theta_i},$$

где индекс " \perp 1"- соответствует лучу 1, распространяющемуся перпендикулярно вниз под углом $\theta_{\perp 1} = \theta_i - 90^\circ$ к оси анизотропии пространства, а индекс " \perp 2"- соответствует лучу 2, распространяющемуся перпендикулярно вверх под углом $\theta_{\perp 2} = \theta_i + 90^\circ$. Время распространения лучей 1 и 2 из точки *O* в точки *O*₃ и *O*₄ составляет

$$t_1 = \frac{OO_1}{c_{\perp 1}} + \frac{O_1O_3}{c_i}, \quad t_2 = \frac{OO_2}{c_{\perp 2}} + \frac{O_1O_3}{c_i} + \frac{O_3O_4\cos\varphi}{c_i}$$

и для Δt получаем

$$\Delta t = t_2 - t_1 = \frac{OO_2}{c_{\perp 2}} + \frac{O_3O_4\cos\varphi}{c_i} - \frac{OO_1}{c_{\perp 1}}$$

Так как $OO_1 = OO_2 = h$, $O_3O_4 = 2h/\sin\varphi$, разность Δt перепишется

$$\Delta t = \frac{2h}{c} \frac{\cos \varphi + \frac{V}{c} \cos(\theta_i + \varphi)}{\sin \varphi}$$

Радиус вторичной волны (O_3O_5) луча 1 в среде в момент времени t_2 равен

$$O_3O_5 = c_n \Delta t = \frac{2h}{n + \frac{V}{c}\cos\theta_n} \frac{\cos\varphi + \frac{V}{c}\cos(\theta_i + \varphi)}{\sin\varphi}$$

радиус вторичной волны луча 2 равен нулю. Нужно найти в образованном треугольнике $O_3O_4O_5$ угол ψ , соответствующий максимуму угла γ .

Для углов Ψ и γ в треугольнике $O_3O_4O_5$ справедлива теорема косинусов:

$$\begin{cases} (O_3O_5)^2 = (O_4O_5)^2 + (O_3O_4)^2 - 2(O_4O_5)(O_3O_4)\cos\gamma, \\ (O_4O_5)^2 = (O_3O_5)^2 + (O_3O_4)^2 - 2(O_3O_5)(O_3O_4)\cos\psi, \end{cases}$$

откуда заменив Ψ на $\Psi = \theta_i + \varphi - \theta_n$ находим функцию угла γ :

$$\gamma = \arccos \frac{\frac{1}{\sin \varphi} - \frac{\cos \varphi + \frac{V}{c} \cos(\theta_i + \varphi)}{\sin \varphi \left(n + \frac{V}{c} \cos \theta_n\right)} \cos(\theta_i + \varphi - \theta_n)}{\sqrt{\left(\frac{1}{\sin \varphi}\right)^2 - 2\frac{\cos \varphi + \frac{V}{c} \cos(\theta_i + \varphi)}{\sin^2 \varphi \left(n + \frac{V}{c} \cos \theta_n\right)} \cos(\theta_i + \varphi - \theta_n) + \left(\frac{\cos \varphi + \frac{V}{c} \cos(\theta_i + \varphi)}{\sin \varphi \left(n + \frac{V}{c} \cos \theta_n\right)}\right)^2}$$

Как показывают расчеты, максимум функции γ достигается при угле θ_n ,

удовлетворяющем соотношению $n\cos(\theta_i + \varphi - \theta_n) = \cos\varphi$, где $\theta_i + \varphi - \theta_n = \psi$, откуда и следует закон преломления Снеллиуса (4.9). Разумеется, такой же результат получается и в

СТО. Это и доказывает, таким образом, идентичность явления преломления света в теории анизотропного пространства и в СТО.

4.4. Частичное увлечение света движущейся средой. Формула Френеля

Из закона сложения скоростей следует, в частности, формула увлечения света движущейся средой. Действительно, предположим, что в системе отсчета движущейся среды (в системе отсчета S') скорость c'_n света в среде равна (4.10). Скорость света c_n в системе отсчета S найдем, подставив в эту формулу вместо c'_n и $\cos \theta'_n$ преобразования (1.10) и (1.12) и сделав замену $v' = c'_n$ и $v = c_n$. В результате

$$n\sqrt{(c_n - V)^2 - c_n^2 \frac{V^2}{c^2} \sin^2 \theta_n} + \frac{V}{c}(c_n \cos \theta_n - V) - c\left(1 - \frac{V^2}{c^2}\right) = 0$$

Решив это уравнение относительно *с*_{*n*} получаем формулу увлечения света движущейся средой в системе отсчета *S*

$$c_{n} = c \frac{\sqrt{1 - \frac{V^{2}}{c^{2}}} \sqrt{\frac{1}{n^{2}} - \frac{V^{2}}{c^{2}n^{2}} \left(\cos^{2}\theta_{n} + n^{2}\sin^{2}\theta_{n}\right)} + \left(1 - \frac{1}{n^{2}}\right) \frac{V}{c} \cos\theta_{n}}{1 - \frac{V^{2}}{c^{2}n^{2}} \left(\cos^{2}\theta_{n} + n^{2}\sin^{2}\theta_{n}\right)}.$$
 (4.11)

Эта формула полностью совпадает с известной релятивисткой формулой.

При *V* << *с* формула (4.11) переходит в приближенную формулу Френеля

$$c_n \approx \frac{c}{n} + \left(1 - \frac{1}{n^2}\right) V \cos \theta_n$$

4.5. Эффект Доплера. Связь между длиной волны, частотой и скоростью света

Эффектом Доплера, как известно, называется изменение частоты света, воспринимаемое наблюдателем, вследствие взаимного движения наблюдателя и источника света относительно друг друга. В СТО, как известно, наблюдаемая частота ^V волны связана с собственной частотой ^V 0 излучения источника соотношением

$$v = v_0 \frac{\sqrt{1 - \frac{v^2}{c^2}}}{1 - \frac{v}{c} \cos \theta_{vc}},$$
(4.12)

где θ_{vc} - угол между вектором скорости *v* источника и направлением распространения света. При углах наблюдения $\theta_{vc} = \pi / 2$ (или $3\pi / 2$) имеет место так называемый поперечный эффект Доплера (красное смещение)

$$v = v_0 \sqrt{1 - \frac{v^2}{c^2}}$$
,

а его наблюдение является одним из подтверждений СТО.

Если в формуле (4.12) скорость v источника заменить кинетической энергией E_k , то формула (4.12) перепишется

$$v = v_0 \frac{\frac{m_0 c^2}{E_k + m_0 c^2}}{1 - \sqrt{1 - \frac{m_0^2 c^4}{(E_k + m_0 c^2)^2} \cos \theta_{vc}}}.$$
(4.13)

И, как показывает расчет, точно такой же формулой будет описываться эффект Доплера в теории анизотропного пространства, если вместо скорости v' источника рассматривать его кинетическую энергию E'_k . Действительно, предположим, что в системе отсчета *S* в плоскости *xz* (в плоскости страницы) движется со скоростью v источник *i* сферических волн под углом θ_v к положительной оси *x* (рис.4).

Приемник P (наблюдатель), с которым мысленно связана система отсчета S', движется на некотором расстоянии от источника параллельно оси x (ось x' совпадает с осью x) со скоростью V. Предположим, что в момент времени $t_0 = t'_0 = 0$ источник находится в начале координат S(S'). Период "колебания" источника в системе отсчета S равен T. Излучаемые источником сферические волны распространяются в системе отсчета S со скоростью света c. Какой период τ' колебания волн зафиксирует движущийся наблюдатель P?

Обозначим через θ_c угол между направлением распространения волны и положительной осью x. Предположим, что начальная фаза "колебания" источника приходится на момент $t_0 = t'_0 = 0$, когда начала координат систем отсчета S и S'совпадают, а источник находится в начале координат S(S'). После завершения полного цикла колебания (периода T) источник переместится в точку с координатами $(vT \cos \theta_v, 0, vT \sin \theta_v)$ и излучает вторую волну. Волны, разделенные промежутком времени T и расстоянием vT, распространяются в пространстве со скоростью c как две расширяющиеся сферы с двумя центрами: с центром в начале координат S(0, 0, 0) и с центром в точке с координатами $(vT \cos \theta_v, 0, vT \sin \theta_v)$. Дальнейшая судьба источника нас не интересует.

Пусть первая волна, испущенная источником в момент времени $t_0 = t'_0 = 0$, достигает наблюдателя в момент времени *NT* в точке с координатами (*NcT* cos θ_c , 0, *NcT* sin θ_c), где N – число длин волн, укладываемых на этом расстоянии. Радиус первой волны в момент времени *NT* составляет *NcT*. (Источник к этому моменту времени может находиться где угодно, в данном случае он находится на расстоянии *NvT* от начала координат *S*.)

Вторая волна, испущенная источником в момент времени t = T, в момент времени NT Имеет радиус (N - 1)cT с центром в точке с координатами $(vT\cos\theta_v, 0, vT\sin\theta_v)_{H}$ достигает наблюдателя в момент времени NT + т в точке с координатами

 $(NcT\cos\theta_{c} + V\tau, 0, NcT\sin\theta_{c})$. Радиус второй волны увеличивается при этом на величину $c\tau$, а *x*-координата приемника получает приращение $V\tau$. Нужно найти τ .

Из геометрических построений получаем

$$\left(NcT\cos\theta_{c}+V\tau-vT\cos\theta_{v}\right)^{2}+\left(NcT\sin\theta_{c}-vT\sin\theta_{v}\right)^{2}=\left((N-1)cT+c\tau\right)^{2},$$

решив которое относительно ^т получаем

$$\tau = \frac{T}{1 - \frac{V^2}{c^2}} \left[1 - N\left(1 - \frac{V}{c}\cos\theta_c\right) - \frac{V}{c}\frac{v}{c}\cos\theta_v + \sqrt{\left(1 - N\left(1 - \frac{V}{c}\cos\theta_c\right) - \frac{V}{c}\frac{v}{c}\cos\theta_v\right)^2 - \left(1 - \frac{V^2}{c^2}\right) \left(1 - 2N\left(1 - \frac{v}{c}\cos(\theta_c - \theta_v)\right) - \frac{v^2}{c^2}\right)} \right]}{1 - 2N\left(1 - \frac{V}{c}\cos(\theta_c - \theta_v)\right) - \frac{v^2}{c^2}} \right]}$$
Преобразуем это выражение с помощью преобразований $\tau = \frac{\tau'}{\sqrt{1 - \frac{V^2}{c^2}}}$ и $T = \frac{T_0}{\sqrt{1 - \frac{v^2}{c^2}}}$, где

*T*⁰ - собственный период колебания источника. В результате

$$\begin{aligned} \tau' &= \frac{T_0}{\sqrt{1 - \frac{v^2}{c^2}\sqrt{1 - \frac{V^2}{c^2}}}} \left[1 - N\left(1 - \frac{V}{c}\cos\theta_c\right) - \frac{V}{c}\frac{v}{c}\cos\theta_v + \sqrt{\left(1 - N\left(1 - \frac{V}{c}\cos\theta_c\right) - \frac{V}{c}\frac{v}{c}\cos\theta_v\right)^2} - \left(1 - \frac{V^2}{c^2}\right) \left(1 - 2N\left(1 - \frac{v}{c}\cos(\theta_c - \theta_v)\right) - \frac{v^2}{c^2}\right) \right]} \end{aligned}$$

(Пределом этой функции является

$$\tau' = T_0 \frac{\sqrt{1 - \frac{V^2}{c^2}}}{\sqrt{1 - \frac{v^2}{c^2}}} \frac{1 - \frac{v}{c} \cos(\theta_c - \theta_v)}{1 - \frac{V}{c} \cos \theta_c},$$

в чем можно убедиться, если умножить и разделить эту формулу на

$$\left[1 + N\left(1 - \frac{V}{c}\cos\theta_{c}\right) - \frac{V}{c}\frac{v}{c}\cos\theta_{v} + \sqrt{\left(1 - N\left(1 - \frac{V}{c}\cos\theta_{c}\right) - \frac{V}{c}\frac{v}{c}\cos\theta_{v}\right)^{2} - \left(1 - \frac{V^{2}}{c^{2}}\right)\left(1 - 2N\left(1 - \frac{v}{c}\cos(\theta_{c} - \theta_{v})\right) - \frac{v^{2}}{c^{2}}\right)\right]}\right]$$

и устремить $N \rightarrow \infty$.)

Выразим теперь величины θ_c , θ_v и v через θ'_c , θ'_v и v'. Однако прежде заметим, что угол, образованный нормалью волнового фронта второй волны и положительной осью x, не совпадает с углом θ_c , образованным нормалью волнового фронта первой волны и положительной осью x. Приемник непрерывно движется, а процесс измерения периода колебания волн занимает конечный промежуток времени, по крайней мере, в пределах одного полного периода колебания.

Однако при N >> 1 (т.е. на большом удалении приемника от источника по сравнению с длиной волны) изменением угла практически можно пренебречь и считать углом распространения света угол θ_c . Тогда преобразуя параметры первой волны θ_c , θ_v и v, измеренные в системе отсчета S, через параметры той же волны θ'_c , θ'_v и v', измеренные в системе отсчета S' (в "системе приемника"), с помощью преобразований (1.11), (1.13) и (1.17) приходим к окончательному выражению для τ' :

$$\tau' = T_0 \frac{1 - \frac{V}{c} \frac{v'}{c} - \frac{N}{1 + \frac{V}{c} \cos \theta'_c} + \sqrt{\frac{N^2}{\left(1 + \frac{V}{c} \cos \theta'_c\right)^2} - 2N \frac{v'}{c} \frac{\cos \theta'_{vc}}{1 + \frac{V}{c} \cos \theta'_c} + \frac{v'^2}{c^2}}{\sqrt{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}}}$$

где $\theta'_{vc} = \theta'_c - \theta'_v$ - угол между вектором скорости v' и направлением распространения света в системе отсчета S'.

Для вычисления частоты колебания v' волн, разумеется, нужно найти обратную величину от этой функции и устремить $N \to \infty$:

$$v' = \lim_{N \to \infty} v_0 \frac{\sqrt{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}}}{1 - \frac{V}{c} \frac{v'}{c} - \frac{N}{1 + \frac{V}{c} \cos\theta'_c} + \sqrt{\frac{N^2}{\left(1 + \frac{V}{c} \cos\theta'_c\right)^2} - 2N \frac{v'}{c} \frac{\cos\theta'_{vc}}{1 + \frac{V}{c} \cos\theta'_c} + \frac{v'^2}{c^2}} .$$
(4.14)

Пределом функции (4.14), как показывает расчет, является

$$v' = v_{0} \frac{\sqrt{1 - \frac{v'^{2}}{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^{2} c^{2}}}}{1 - \frac{v'}{\left(1 - \frac{V}{c} \frac{v'}{c}\right) c} \cos \theta'_{vc}},$$
(4.15)

в чем можно убедиться, если формулу (4.14) умножить и разделить на

$$1 - \frac{V}{c}\frac{v'}{c} + \frac{N}{1 + \frac{V}{c}\cos\theta'_{c}} + \sqrt{\frac{N^{2}}{\left(1 + \frac{V}{c}\cos\theta'_{c}\right)^{2}} - 2N\frac{v'}{c}\frac{\cos\theta'_{vc}}{1 + \frac{V}{c}\cos\theta'_{c}} + \frac{v'^{2}}{c^{2}}}$$

и устремить $N \to \infty$. Разумеется, формула (4.15) при V = 0 переходит в релятивистскую формулу (4.12). При v' = 0, очевидно, получаем

$$v' = v_0$$

Частота света покоящегося источника не зависит, таким образом, от направления распространения света. Длина волны λ' излучения, частота ν' и скорость c' света связаны соотношением

$$v'\lambda' = c'. \tag{4.16}$$

Формула (4.15) при углах наблюдения $\theta'_{vc} = \pi / 2$ (или $3\pi / 2$) (угол θ'_{vc} имеет тот же физический смысл, что и угол θ_{vc} в формуле (4.12)) также приводит к поперечному смещению частоты световой волны. Однако в отличие от релятивистской формулы (4.12) величина этого смещения (при фиксированном значении скорости источника v') зависит от направления движения источника в пространстве. Известно (см, например, [23]), что данные измерения доплеровских частот сигналов, получаемых от АМС "Пионер-10" и "Пионер-11", проводимые с поверхности Земли, находящейся, предположительно, в состоянии абсолютного движения, не совсем соответствуют релятивистским расчетным данным. Не в этом ли причина этих расхождений?

Но так как на практике вместо скорости v' имеют дело с кинетической энергией E'_k источника (элементарным частицам сообщается кинетическая энергия E'_k , а не скорость v'), то, оказывается, что эффект Доплера (при фиксированном значении E'_k , а не v') в теории анизотропного пространства полностью совпадает с эффектом Доплера в СТО. В этом легко убедиться, если в формуле (4.15) вместо скорости v' подставить формулу (2.37) и получить

$$v' = v_0 \frac{\frac{m_0 c^2}{E'_k + m_0 c^2}}{1 - \sqrt{1 - \frac{m_0^2 c^4}{(E'_k + m_0 c^2)^2} \cos \theta'_{vc}}},$$
(4.17)

которая совпадает формулой (4.13).

Непосредственная проверка формулы (4.15) затруднительна. Главная трудность, это синхронизация часов. Существующий способ синхронизации часов с помощью световых сигналов делает эту процедуру невозможной.

Однако, по-видимому, существует способ абсолютной синхронизации часов, который позволяет измерить скорость v' источника в системе отсчета S'. Это способ синхронизации часов с помощью вращающегося диска, так как для измерения периода T' вращения диска требуются лишь одни часы. Угловая скорость вращения диска будет равна $\omega' = 2\pi / T'$, линейная $v' = \omega' r'$, где r' - радиус диска. Тогда, если какая-нибудь точка на окружности диска пересечет в системе отсчета S' точку A' в момент времени

$$t'_0 = 0$$

то диаметрально противоположную точку B' она пересечет в момент времени (хотя, возможно, я ошибаюсь)

$$t' = T' / 2$$
.

Часы A' и B' будут синхронизированы. Расстояние между точками известно. Остается только измерить скорость v'. Либо поместить источник на вращающийся диск.

4.6. Эффект Саньяка

Эффект Саньяка, как известно, заключается в том, что во вращающемся кольцевом интерферометре встречные волны приобретают взаимный фазовый сдвиг, пропорциональный угловой скорости вращения и площади, охватываемой интерферометром. Световой луч, распространяющийся, например, в направлении

вращения интерферометра, приходит к источнику позже, чем луч, распространяющийся в противоположном направлении. Эффект с точки зрения СТО совершенно загадочный и, таким образом, не поддающийся непротиворечивому объяснению.

Сам же Саньяк для объяснения эффекта пользовался классической теорией сложения скоростей и получил теоретическое значение величины эффекта путем классического сложения скорости света с линейной скоростью вращения платформы. Расхождение этого результата с экспериментом порядка процента.

Отчасти такое объяснение сохранилось и в дальнейшем. Однако до сих пор в печати (см., например, [24-26]) все еще можно встретить различные попытки объяснения эффекта Саньяка с точек зрения СТО и ОТО. Ошибочность таких объяснений показана в работах [27-29].

Итак, рассмотрим круговую траекторию распространения лучей в опыте Саньяка, чему соответствует случай бесконечного числа зеркал кольцевого интерферометра.

Пусть интерферометр вращается относительно системы отсчета S с угловой скоростью + Ω по часовой стрелке в плоскости данной страницы. Лучи света, испущенные источником в противоположные стороны (по ходу вращения интерферометра и против), распространяются в плоскости платформы интерферометра (координата луча z постоянна z = 0) по окружности радиуса

$$r = r_0 \sqrt{1 - \frac{\Omega^2 r_0^2}{c^2}},$$

где r_0 - радиус кольцевого интерферометра в отсутствии вращения со скоростью света c.

Лучи, испущенные в момент времени $t_0 = 0$ с учетом начального состояния $\phi_{\pm}(0) = 0$, встретятся в момент t_1 , когда $\phi_{\pm}(t_1) = \pm \pi$ (здесь $\phi(t)$ - текущая координата луча, предполагается, что угловая координата луча меняется непрерывно и может принимать какие угодно большие положительные и отрицательные значения). Следующий раз лучи встретятся в момент t_2 , когда $\phi_{\pm}(t_2) = \pm 2\pi$, т.е. в кратной точке начального состояния. Здесь индексом "+" помечен луч, распространяющийся в направлении вращения платформы, а индексом "—" обозначен луч, распространяющийся в противоположном направлении. Так как угловая координата источника меняется по закону + Ωt , встреча \pm лучей с источником (или, то же самое, в данном случае встреча источника с \pm лучами) произойдет в момент времени t_{\pm} , определяемый из условия $\pm ct_{\pm} = \pm 2\pi r + \Omega t_{\pm} r$:

$$t_{\pm} = \frac{2\pi r}{c \mp \Omega r}.$$

Разность Δt составит

$$\Delta t = t_{+} - t_{-} = \frac{4\pi \Omega r^{2}}{c^{2} \left(1 - \frac{\Omega^{2} r^{2}}{c^{2}}\right)}.$$

Таким образом, с точки зрения наблюдателя S, рассматриваемые события неодновременны. Луч, для которого направление обхода совпадает с направлением вращения, приходит к источнику позже, чем луч, для которого оно противоположно (источник успевает переместиться на расстояние + $0 t_{\pm} r$).

Однако эти события неодновременны и в системе отсчета S', неподвижно связанной с вращающимся кольцевым интерферометром. Действительно, согласно (1.2) $\Delta t'$ равна:

$$\Delta t' = t'_{+} - t'_{-} = \Delta t \sqrt{1 - \frac{\Omega^2 r^2}{c^2}} = \frac{4\pi \Omega r^2}{c^2 \sqrt{1 - \frac{\Omega^2 r^2}{c^2}}} \approx \frac{4\Omega S}{c^2} \approx \frac{4\Omega S}{c^2} \neq 0, \qquad (4.18)$$

откуда и следует данное утверждение.

Разумеется, к такому же результату приводит и обратный ход рассуждения. Действительно, во вращающейся системе отсчета S' скорость света c', измеренная вдоль окружности интерферометра в противоположных направлениях, согласно (1.18) равна:

$$c'_{\pm} = \frac{c}{c \pm \frac{\Omega r}{c}},$$

а длина окружности интерферометра составляет

$$2\pi r' = \frac{2\pi r}{\sqrt{1 - \frac{\Omega^2 r^2}{c^2}}}.$$

Таким образом, с точки зрения наблюдателя S' "+" луч, испущенный источником в

момент времени t' = 0 из точки $\varphi'_{\pm}(0) = 0$, встретится с источником в момент времени

$$t'_{+} = \frac{2\pi r \left(c + \frac{\Omega r}{c}\right)}{c \sqrt{1 - \frac{\Omega^2 r^2}{c^2}}},$$

а "-" луч в момент времени

$$t'_{-} = \frac{2\pi r \left(c - \frac{\Omega r}{c} \right)}{c \sqrt{1 - \frac{\Omega^2 r^2}{c^2}}}.$$

Разность $\Delta t'$ составит

$$\Delta t' = t'_{+} - t'_{-} = \frac{4\pi \Omega r^{2}}{c^{2} \sqrt{1 - \frac{\Omega^{2} r^{2}}{c^{2}}}} \approx \frac{4\Omega S}{c^{2}} \approx \frac{4\Omega S_{0}}{c^{2}},$$

откуда и следует результат (4.18).

Т.е., таким образом, эффект Саньяка во вращающейся системе отсчета является следствием анизотропии скорости света.

Глава 5. Элементы квантовой механики

5.1. Волновые свойства частиц. Волна де Бройля

Квантовой (волновой) механикой называется раздел физики, изучающий законы движения частиц в области микромира (в масштабах 10⁻⁶÷10⁻¹³ см). В основе квантовой механики лежат представления о квантах энергии, о фотонах, о существовании дискретных значений физических величин, характеризующих состояния микрочастиц, гипотеза де Бройля о волновых свойствах частиц и т.д. и т.п. Например, согласно гипотезе де Бройля каждой свободной частице можно сопоставить волну

$$\lambda = \frac{h}{p},\tag{5.1}$$

где *h* – постоянная Планка, *P* – импульс частицы, *λ* - длина волны, связанная с этой движущейся частицей, которая ответственна за явление дифракции (интерференции)

частиц.

Однако это представление (см. [30]), противоречит СТО. Действительно, предположим, что в системе отсчета S вдоль оси x движется со скоростью V частица с массой m_0 . Импульс p частицы в системе отсчета S в соответствии с формулой (2.4) равен

$$p = \frac{m_0 V}{\sqrt{1 - \frac{V^2}{c^2}}}$$

и для длины волны де Бройля согласно формуле (5.1) получаем

$$\lambda = \frac{h\sqrt{1 - \frac{V^2}{c^2}}}{m_0 V}.$$
(5.2)

Прохождение этой волны через щель, очевидно, должно сопровождаться дифракцией, а дифракционная картина, очевидно, не должна меняться в зависимости от того, движется наблюдатель или нет.

Однако совершенно иной будет картина, если перейти в сопутствующую систему отсчета S', движущуюся вместе с частицей. Импульс p' частицы в системе отсчета S' с точки зрения СТО равен нулю

$$p' = 0$$

следовательно, для релятивистской длины волны де Бройля получается бесконечность

$$\lambda' = \infty . \tag{5.3}$$

Таким образом, с точки зрения движущегося наблюдателя S' никакой дифракционной картины не должно наблюдаться (частица через щель не пройдет). А выше говорили, что дифракционная картина не должна меняться в зависимости от того, движется наблюдатель или нет. Получилось противоречие. Это противоречие принципиальное и в рамках СТО не может быть разрешено.

Противоречие разрешается в рамках теории анизотропного пространства. Действительно, с точки зрения теории анизотропного пространства (см. формулу (2.6)) импульс *p*' частицы в сопутствующей системе отсчета *S*' равен

$$p' = m_0 V$$
69

и для длины волны де Бройля в системе отсчета S' вместо (5.3) получается

$$\lambda' = \frac{h}{m_0 V} \, .$$

Таким образом, в системе отсчета движущегося наблюдателя S' также должна наблюдаться дифракционная картина.

Согласно гипотезе Грызинского [31] всякое поступательное движение частицы сопровождается прецессией спиновой оси частицы, пропорциональной импульсу частицы, спиновая ось которой после прохождении дистанции λ ориентируется в пространстве точно таким же образом. Если, например, период T прецессии спина в системе отсчета S равен

$$T = \frac{\lambda}{V} = \frac{h\sqrt{1 - \frac{V^2}{c^2}}}{m_0 V^2},$$

то в системе отсчета S' период прецессии T' спиновой оси частицы согласно преобразованию (1.2) равен

$$T' = T\sqrt{1 - \frac{V^2}{c^2}} = \frac{h\left(1 - \frac{V^2}{c^2}\right)}{m_0 V^2}$$

и прохождение частицы через щель в системе отсчета S' также будет сопровождаться дифракцией. Т.е., таким образом, только в рамках теории анизотропного пространства и в рамках атомной физики Грызинского удается разрешить это противоречие.

5.2. Эффект Комптона

Эффектом Комптона, как известно, называется изменение частоты фотонов при их рассеянии электронами и нуклонами. Рассмотрим эффект с точки зрения теории анизотропного пространства. Фотон, как известно, обладает спином *h*, а его энергия и импульс равны

$$E = hv$$
, $p = \frac{hv}{c}$.

Тогда в первом приближении рассеяние фотонов на свободных электронах можно

рассматривать как процесс упругого столкновения, в котором электрон вначале движется со скоростью ν'_1 , а после столкновения со скоростью ν'_2 . (При более точном рассмотрении необходимо учитывать, что электрон в момент столкновения испускает фотон.) Из закона сохранения энергии и импульса имеем

$$hv'_{1} + \frac{m_{e}c^{2}}{\sqrt{1 - \frac{v_{1}'^{2}}{\left(1 - \frac{V}{c}\frac{v_{1}'}{c}\right)^{2}c^{2}}}} = hv'_{2} + \frac{m_{e}c^{2}}{\sqrt{1 - \frac{v_{2}'^{2}}{\left(1 - \frac{V}{c}\frac{v_{2}'}{c}\right)^{2}c^{2}}}},$$

$$\frac{hv'_{1}}{c_{1}'}n_{1}' + \frac{m_{e}\left(V + \frac{v_{1}'}{\left(1 - \frac{V}{c}\frac{v_{1}'}{c}\right)}\right)}{\sqrt{1 - \frac{V_{1}'^{2}}{\left(1 - \frac{V}{c}\frac{v_{1}'}{c}\right)^{2}c^{2}}}} = \frac{hv'_{2}}{c_{2}'}n_{2}' + \frac{m_{e}\left(V + \frac{v_{2}'}{\left(1 - \frac{V}{c}\frac{v_{2}'}{c}\right)}\right)}{\sqrt{1 - \frac{V_{1}'^{2}}{\left(1 - \frac{V}{c}\frac{v_{1}'}{c}\right)^{2}c^{2}}}},$$

где m_e - собственная масса электрона, v'_1 и v'_2 - частоты, соответствующие первичному, т.е. распространяющемуся под углом θ'_1 к положительной оси x' со скоростью c'_1 фотону, и вторичному (рассеянному) фотону, распространяющемуся под углом θ'_2 к положительной оси x' со скоростью c'_2 , n'_1 и n'_2 - единичные векторы, направленные в сторону распространения фотонов, θ'_1 - угол между положительной осью x' и вектором v'_1 , ϕ'_2 - угол между положительной осью x' и вектором v'_2 .

Разделив первое уравнение на ^с и возведя в квадрат, вычтем второе уравнение, также возведенное в квадрат. В результате получаем уравнение

$$-\frac{V^{2}}{c^{2}}\left(1-\cos^{2}\theta'_{2}\right)v'_{2}^{2} - 2\left[1+\frac{m_{e}c^{2}}{hv'_{1}}\frac{1-\frac{v'_{1}}{c}\left(1+\frac{V}{c}\cos\theta'_{2}\right)\cos(\theta'_{2}-\varphi'_{1})}{\sqrt{\left(1-\frac{V}{c}\frac{v'_{1}}{c}\cos\varphi'\right)^{2}-\frac{v'_{1}^{2}}{c^{2}}}} - \left(1+\frac{V}{c}\cos\theta'_{1}\right)\left(1+\frac{V}{c}\cos\theta'_{2}\right)\cos(\theta'_{2}-\theta'_{1}) + \frac{V}{c}(\cos\theta'_{1}+\cos\theta'_{2}) - \frac{V^{2}}{c^{2}}(1-\cos^{2}\theta'_{1}-\cos^{2}\theta'_{2})\right]v'_{1}v'_{2} + \left[2\frac{m_{e}c^{2}}{hv'_{1}}\frac{1-\frac{v'_{1}}{c}\left(1+\frac{V}{c}\cos\theta'_{1}\right)\cos(\theta'_{1}-\varphi'_{1})}{\sqrt{\left(1-\frac{V}{c}\frac{v'_{1}}{c}\cos\varphi'\right)^{2}-\frac{v'_{1}^{2}}{c^{2}}}} - \frac{V^{2}}{c^{2}}(1-\cos^{2}\theta'_{1})\right]v'_{1}v'_{2} + \left[2\frac{m_{e}c^{2}}{hv'_{1}}\frac{1-\frac{v'_{1}}{c}\left(1+\frac{V}{c}\cos\varphi'_{1}\right)\cos(\theta'_{1}-\varphi'_{1})}{\sqrt{\left(1-\frac{V}{c}\frac{v'_{1}}{c}\cos\varphi'\right)^{2}-\frac{v'_{1}^{2}}{c^{2}}}} - \frac{V^{2}}{c^{2}}(1-\cos^{2}\theta'_{1})\right]v'_{1}v'_{2} = 0.$$

Это уравнение при V = 0 переходит в известное релятивистское уравнение

$$-\left(1+\frac{m_ec^2}{hv'_1}\frac{1-\frac{v'_1}{c}\cos(\theta'_2-\phi'_1)}{\sqrt{1-\frac{v'_1^2}{c^2}}}-\cos(\theta'_2-\theta'_1)\right)v'_2+\frac{m_ec^2}{hv'_1}\frac{1-\frac{v'_1}{c}\cos(\theta'_1-\phi'_1)}{\sqrt{1-\frac{v'_1^2}{c^2}}}v'_1=0.$$

.

В этом случае частота v'_2 вторичного фотона равна

$$v'_{2} = \frac{1 - \frac{v'_{1}}{c} \cos(\theta'_{1} - \varphi'_{1})}{1 - \frac{v'_{1}}{c} \cos(\theta'_{2} - \varphi'_{1}) + \frac{hv'_{1}\sqrt{1 - \frac{v'_{1}^{2}}{c^{2}}}}{m_{e}c^{2}}(1 - \cos(\theta'_{2} - \theta'_{1}))}v'_{1}.$$
(5.5)

Как показывают расчеты, частота v'_2 фотона, вычисленная по формуле (5.4),

отличается от частоты ^у ², вычисленной по релятивистской формуле (5.5). Это совершенно новое явление анизотропного характера, допускающее экспериментальную проверку и позволяющее измерить абсолютную скорость Земли относительно пространства (см., например, результаты недавних экспериментов [32]).

Глава 6. Гравитация
6.1. Вводные замечания

В этой главе, как и в главе «Электричество», будет рассматриваться только макроскопическая теория гравитации. Как известно, между любыми двумя материальными телами действуют силы тяготения, прямо пропорциональные произведению масс этих тел и обратно пропорциональные квадрату расстояния между ними.

Принято считать, что все тела в одном и том же поле тяготения падают с одинаковым ускорением, и что этот экспериментальный факт, впервые установленный Галилеем, является якобы подтверждением закона равенства инертной и гравитационной масс.

Однако, как было показано автором в [33], закон Галилея является приближенным законом и справедлив, когда масса m падающего тела много меньше массы M создающей это поле (m << M). В общем же случае

$$m\boldsymbol{a}_{\text{OTH}} = (1 + m / M)\boldsymbol{F}$$

где $a_{\text{отн}}$ - ускорение тела относительно массы M, F - сила, действующая на массу m со стороны массы M. Ускорение $a_{\text{отн}}$ падающего тела зависит от массы m тела и при m = M возрастает в два раза по сравнению с m << M.

Но если даже под ускорением тела подразумевать ускорение относительно инерциальной системы отсчета (центра масс тел), то и в этом случае закон Галилея также является приближенным законом и справедлив, когда скорость v падающего тела много меньше скорости c света в вакууме ($v \le c$).

Действительно, с увеличением скорости v падающего тела инертная m масса тела будет расти. Однако гравитационная масса m_0 (точнее, гравитационный заряд $i\sqrt{G}m_0$, где G - гравитационная постоянная, m_0 - собственная масса тела при нуле градусов по шкале Кельвина) тела по своему физическому смыслу (аналогично электрическому заряду) расти не может, так как в противном случае скорость v тела в какой-то момент времени превысила бы скорость c света, а это абсурдно. Поэтому ускорение a тела с увеличением скорости v тела будет уменьшаться и стремиться к нулю при приближении к скорости c света. Поэтому, таким образом, ни закон падения Галилея, ни закон равенства инертной и гравитационной масс и т.д. и т.п. не могут являться точными законами природы, и, тем более, воздвигнуты в фундаментальные постулаты природы и распространены в область больших скоростей и сильных полей.

Только в пределе медленных движений, т.е., собственно говоря, в рамках классической механики Ньютона, являющейся, по сути, механикой медленных движений, эти законы могут приближенно выполняться. Эйнштейн же, однако, эти приближенные законы возвел в ранг фундаментальных постулатов и распространил в область высоких скоростей и сильных полей.

6.2. Закон тяготения Ньютона. Собственный гравитационный заряд

Собственным гравитационным зарядом $i\sqrt{G}m_0$ называется мнимый гравитационный заряд, измеренный в собственный системе отсчета S_0 заряда $i\sqrt{G}m_0$. Гравитационный заряд $i\sqrt{G}m_0$ является инвариантом и при переходе в другую систему отсчета не меняется. В собственной системе отсчета S_0 , как показывает опыт, справедлив закон тяготения Ньютона

$$\boldsymbol{g}_{0} = \frac{i\sqrt{G}m_{0}}{r_{0}^{3}}\boldsymbol{r}_{0}, \qquad (6.1)$$

где **g**₀ – напряженность гравитационного поля (сила, отнесенная к единице гравитационного заряда), **r**₀ - радиус-вектор, проведенный из точки нахождения заряда в точку наблюдения. В координатной форме закон тяготения Ньютона записывается

$$g_{0x} = \frac{i\sqrt{G}m_0}{r_0^3}r_{0x}, \quad g_{0y} = \frac{i\sqrt{G}m_0}{r_0^3}r_{0y}, \quad g_{0z} = \frac{i\sqrt{G}m_0}{r_0^3}r_{0z}.$$
(6.2)

6.3. Гравитационное (роторное) поле движущегося в системе отсчета *S* гравитационного заряда. Частное преобразование гравитационного поля

Пусть точечный гравитационный заряд $i\sqrt{G}m_0$ (источник поля), с которым мысленно

связана сопутствующая система отсчета S_0 (заряд $i\sqrt{G}m_0$ расположен в начале координат S_0) движется в системе отсчета S со скоростью v вдоль положительной оси x. Здесь и далее под плоскостью $xz(x_0z_0)$ будет подразумеваться плоскость страницы, где ось $x(x_0)$ ориентирована вправо, а ось $z(z_0)$ направлена вверх; ось $y(y_0)$, очевидно, направлена от читателя.

Пусть на положительной оси y_0 системы отсчета S_0 на расстоянии r_{0y} от начала координат находится пробный гравитационный заряд $i\sqrt{G}m_0$, движущийся вместе с системой отсчета S_0 . Сила, действующая на пробный заряд со стороны источника, равна

$$f_{0y} = -\frac{Gm_0^2}{r_{0y}^2}$$

и направлена вдоль отрицательной оси Уо.

В соответствии с правилом преобразования силы (2.21) (в данном случае V = v) у-компонента силы в системе отсчета S равна

$$f_{y} = -\frac{Gm_{0}^{2}}{r_{0y}^{2}}\sqrt{1-\frac{v^{2}}{c^{2}}} = -\frac{Gm_{0}^{2}}{r_{y}^{2}}\sqrt{1-\frac{v^{2}}{c^{2}}}$$

и также направлена вдоль отрицательной оси ^у. Эта сила является суммой (по аналогии с электромагнитной силой) двух сил, гравитационной и роторной, и в соответствие с формулой Лоренца можно написать

$$-\frac{Gm_0^2}{r_y^2}\sqrt{1-\frac{v^2}{c^2}}=i\sqrt{G}m_0\left(g_y-\frac{v}{c}H_z\right),$$

решив которое относительно $g_{y}(H_{z})$ получаем

$$g_{y} = \frac{i\sqrt{G}m_{0}}{r_{y}^{2}\sqrt{1-\frac{v^{2}}{c^{2}}}} \left(H_{z} = \frac{v}{c}\frac{i\sqrt{G}m_{0}}{r_{y}^{2}\sqrt{1-\frac{v^{2}}{c^{2}}}}\right).$$
(6.3)

Аналогичное выражение (кроме различия в знаке) можно получить для компоненты

поля $g_z(H_y)$. Оно будет точно таким же, если бы пробный гравитационный заряд $i\sqrt{G}m_0$ был бы расположен в системе отсчета S_0 на положительной оси z_0 на расстоянии r_{0z} от начала координат.

Остается выяснить, как преобразовывается продольная компонента гравитационного поля в направлении движения, когда пробный гравитационный заряд $i\sqrt{G}m_0$ расположен в системе отсчета S_0 на положительной оси x_0 на расстоянии r_{0x} от начала координат.

Сила, действующая в этом случае на пробный заряд со стороны источника, равна

$$f_{0x} = -\frac{Gm_0^2}{r_{0x}^2}.$$

В соответствии с правилом преобразования силы (2.21) х-компонента силы в системе отсчета *S* равна

$$f_x = -\frac{Gm_0^2}{r_{0x}^2} = -\frac{Gm_0^2}{r_x^2} \left(1 - \frac{v^2}{c^2} - \frac{r_x^2}{r_x^2} - \frac{Gm_0^2}{r_x^2} \right)$$

и также направлена вдоль отрицательной оси *x*. Эта сила является чисто гравитационной силой и для x-компоненты гравитационного поля можно написать

$$g_x = \frac{i\sqrt{G}m_0}{r_x^2} \left(1 - \frac{v^2}{c^2}\right).$$
 (6.4)

Сравнивая теперь между собой выражения (6.2), (6.3) и (6.4) находим, что

компоненты гравитационного поля в системах отсчета *S* и *S*₀ связаны преобразованиями

$$g_{0x} = g_x, \quad g_{0y} = g_y \sqrt{1 - \frac{v^2}{c^2}}, \quad g_{0z} = g_z \sqrt{1 - \frac{v^2}{c^2}}$$
 (6.5)

(если преобразование (6.5) формально умножить и поделить на $\sqrt{1 - \frac{v^2}{c^2}}$ оно приобретает

вид

$$g_{0x} = g_x, \quad g_{0y} = \frac{g_y - \frac{v}{c}H_z}{\sqrt{1 - \frac{v^2}{c^2}}}, \quad g_{0z} = \frac{g_z + \frac{v}{c}H_y}{\sqrt{1 - \frac{v^2}{c^2}}})$$

И

$$g_x = g_{0x}, \quad g_y = \frac{g_{0y}}{\sqrt{1 - \frac{v^2}{c^2}}}, \quad g_z = \frac{g_{0z}}{\sqrt{1 - \frac{v^2}{c^2}}}.$$
 (6.6)

Модули векторов \boldsymbol{g} и \boldsymbol{g}_0 в системах отсчета S и S_0 , очевидно, связаны преобразованиями

$$g_0 = g \sqrt{1 - \frac{v^2}{c^2} \sin^2 \theta}$$
 (6.7)

И

$$g = g_0 \frac{\sqrt{1 - \frac{v^2}{c^2} \cos^2 \theta_0}}{\sqrt{1 - \frac{v^2}{c^2}}},$$
(6.8)

а углы θ и θ_0 между векторами g и g_0 и положительными осями x и x' (вектором v)

$$\cos\theta_0 = \frac{\cos\theta}{\sqrt{1 - \frac{v^2}{c^2}\sin^2\theta}}$$
(6.9)

И

$$\cos\theta = \frac{\cos\theta_0}{\sqrt{1 - \frac{v^2}{c^2}\cos^2\theta_0}} \sqrt{1 - \frac{v^2}{c^2}}.$$
(6.10)

Найдем теперь конфигурацию гравитационного поля заряда $i\sqrt{G}m_0$, наблюдаемую в системе отсчета S. В собственной системе отсчета S_0 конфигурация гравитационного поля заряда $i\sqrt{G}m_0$ имеет вид

$$g_0 = \frac{i\sqrt{G}m_0}{r_0^2}.$$

С помощью преобразований (6.7) и (1.4) при V = v и t = 0 преобразуем это выражение. В результате

$$g = \frac{i\sqrt{G}m_0}{r^2} \cdot \frac{1 - \frac{v^2}{c^2}}{\left(\cos^2\theta + \left(1 - \frac{v^2}{c^2}\right)\sin^2\theta\right)^{3/2}},$$
(6.11)

где θ - угол между положительной осью x (вектором v) и радиус-вектором r наблюдения. В общем случае, очевидно,

$$g = \frac{i\sqrt{G}m_0}{r^2} \cdot \frac{1 - \frac{v^2}{c^2}}{\left(\cos^2\theta_{vr} + \left(1 - \frac{v^2}{c^2}\right)\sin^2\theta_{vr}\right)^{\frac{3}{2}}},$$
(6.12)

где ^θ _{vr} - угол между вектором v и радиус-вектором r наблюдения. Эта конфигурация поля и будет наблюдаться в системе отсчета S.

Конфигурация роторного поля заряда $i\sqrt{G}m_0$ в системе отсчета S, очевидно, имеет вид

$$\boldsymbol{H} = \frac{1}{c} | \boldsymbol{v} \times \boldsymbol{g} | = \frac{i\sqrt{G}m_0}{r^2} \cdot \frac{1 - \frac{v^2}{c^2}}{\left(\cos^2\theta_{vr} + \left(1 - \frac{v^2}{c^2}\right)\sin^2\theta_{vr}\right)^{\frac{3}{2}}} \frac{v}{c} \sin\theta_{vr}.$$
(6.13)

6.4. Гравитационное поле движущегося в системе отсчета S' гравитационного заряда. Общее преобразование гравитационного поля

Пусть теперь пробный гравитационный заряд $i\sqrt{G}m_0$ движется в системе отсчета *S* со скоростью *V* вместе с системой отсчета *S'* (пробный заряд $i\sqrt{G}m_0$ расположен в системе отсчета *S'* на положительной оси *y'* на расстоянии r'_y от начала координат). Источник поля $i\sqrt{G}m_0$, как и в прошлой задаче, пусть движется (вместе с системой

отсчета S_0) в системе отсчета S со скоростью v (v > V) вдоль положительной оси x. Какое гравитационное поле g'_y измерит движущийся наблюдатель S'?

Предположим, что в момент времени t' = 0 источник $i\sqrt{G}m_0$ находится в начале координат системы отсчета S', а расстояние между зарядами равно r'_y . В системе отсчета S расстояние между зарядами равно $r_y = r'_y$, а их положение таково, что гравитационное поле источника $i\sqrt{G}m_0$ в точке наблюдения r_y , как и в прошлой задаче, направлено вдоль положительной оси y, а роторное поле вдоль положительной оси z. Величины полей описываются выражениями (6.3), а сила, действующая на пробный гравитационный заряд со стороны источника, равна

$$f_{y} = -\frac{Gm_{0}^{2}\left(1 - \frac{V}{c}\frac{v}{c}\right)}{r_{y}^{2}\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

и направлена вдоль отрицательной оси У.

В соответствии с правилом преобразования силы (2.22) у-компонента силы в системе отсчета S' равна

$$f'_{y} = -\frac{Gm_{0}^{2}\left(1 - \frac{V}{c}\frac{v}{c}\right)}{r_{y}^{2}\sqrt{1 - \frac{v^{2}}{c^{2}}\sqrt{1 - \frac{V^{2}}{c^{2}}}}} = -\frac{Gm_{0}^{2}\left(1 - \frac{V}{c}\frac{v}{c}\right)}{r_{y}^{\prime 2}\sqrt{1 - \frac{v^{2}}{c^{2}}}\sqrt{1 - \frac{V^{2}}{c^{2}}}$$

и также направлена вдоль отрицательной оси y'. С помощью преобразований (1.31) и (2.18) преобразуем эту формулу. В результате

$$f'_{y} = -\frac{Gm_{0}^{2}\left(1 - \frac{V}{c}\frac{v'}{c}\right)}{r'_{y}^{2}\sqrt{\left(1 - \frac{V}{c}\frac{v'}{c}\right)^{2} - \frac{{v'}^{2}}{c^{2}}}}$$

Эта сила является гравитационной силой и для у-составляющей гравитационного поля можно написать

$$g'_{y} = \frac{i\sqrt{G}m_{0}}{r'_{y}^{2}} \frac{\left(1 - \frac{V}{c}\frac{v'}{c}\right)}{\sqrt{\left(1 - \frac{V}{c}\frac{v'}{c}\right)^{2} - \frac{{v'}^{2}}{c^{2}}}}.$$
(6.14)

Аналогичное выражение можно получить и для z-компоненты гравитационного поля, если бы пробный гравитационный заряд $i\sqrt{G}m_0$ был бы расположен в системе отсчета S' на положительной оси z' на расстоянии r'_z от начала координат.

Таким образом, в теории анизотропного пространства в поперечном направлении наблюдения гравитационному заряду $i\sqrt{G}m_0$, движущемуся в системе отсчета S' со скоростью v' вдоль положительной оси x', можно сопоставить эффективный

гравитационный заряд равный $i\sqrt{G}m_0\left(1-\frac{V}{c}\frac{v'}{c}\right)$, являющийся источником

гравитационного поля.

Остается выяснить, как преобразуется x-компонента гравитационного поля в направлении движения, когда пробный гравитационный заряд $i\sqrt{G}m_0$ находится в системе отсчета S' на положительной оси x' на расстоянии r'_x от начала координат?

Расстояние между зарядами в системе отсчета *S* в момент времени t = 0 равно r_x , хкомпонента гравитационного поля источника $i\sqrt{G}m_0$ равна (6.4). Сила, действующая на пробный заряд со стороны источника, равна

$$f_x = -\frac{Gm_0^2}{r_x^2} \left(1 - \frac{v^2}{c^2} \right)$$

и направлена вдоль отрицательной оси *x*.

В соответствии с правилом преобразования силы (2.22) х-компонента силы в системе отсчета S' равна

$$f'_{x} = -\frac{Gm_{0}^{2}}{r_{x}^{2}} \left(1 - \frac{v^{2}}{c^{2}}\right)^{r_{x} = r'_{x}} \sqrt{1 - \frac{v^{2}}{c^{2}}} \frac{Gm_{0}^{2} \left(1 - \frac{v^{2}}{c^{2}}\right)}{r'_{x}^{2} \left(1 - \frac{v^{2}}{c^{2}}\right)}$$

и также направлена вдоль отрицательной оси x'. С помощью преобразования (1.31) преобразуем это выражение. В результате

$$f'_{x} = -\frac{Gm_{0}^{2}}{r'_{x}^{2}} \left(\left(1 - \frac{V}{c} \frac{v'}{c}\right)^{2} - \frac{v'^{2}}{c^{2}} \right)$$

Эта сила является гравитационной силой и для х-компоненты гравитационного поля можно написать

$$\mathbf{g}'_{x} = \frac{i\sqrt{G}m_{0}}{r'^{2}_{x}} \left(\left(1 - \frac{V}{c}\frac{v'}{c}\right)^{2} - \frac{v'^{2}}{c^{2}} \right).$$
(6.15)

Таким образом, в продольном направлении наблюдения гравитационному заряду $i\sqrt{G}m_0$, движущемуся в системе отсчета S' со скоростью v' вдоль положительной оси x', можно сопоставить эффективный гравитационный заряд равный $i\sqrt{G}m_0$, являющийся источником гравитационного поля.

Сравнивая теперь между собой выражения (6.14), (6.15) и (6.4) находим, что компоненты гравитационного поля в системах отсчета *S* и *S'* в теории анизотропного пространства связаны преобразованием

$$g'_{x} = g_{x}, \quad g'_{y} = \frac{g_{y} - \frac{V}{c}H_{z}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad g'_{z} = \frac{g_{z} + \frac{V}{c}H_{y}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}.$$
 (6.16)

6.5. Роторное (гравитационное) поле движущегося в системе отсчета S' гравитационного заряда. Преобразование роторного (гравитационного) поля

Пусть теперь пробный гравитационный заряд $i\sqrt{G}m_0$ движется в системе отсчета *S* вдоль положительной оси *x* со скоростью v_1 ($v_1 > V$). Источник $i\sqrt{G}m_0$, по-прежнему, пусть движется (вдоль положительной оси x) со скоростью v (v > V), а система отсчета S' со скоростью V. Какое поле измерит движущийся наблюдатель S'?

В момент времени t' = t = 0 пробный заряд $i\sqrt{G}m_0$ находится в системах отсчета S(S') на положительной оси y(y') на расстоянии $r_y(r'_y)$ от начала координат S(S'), а источник $i\sqrt{G}m_0$ в начале координат S(S'). В системе отсчета S гравитационное поле источника $i\sqrt{G}m_0$ в точке наблюдения, как и в прошлой задаче, направлено вдоль положительной оси y, а роторное поле вдоль положительной оси z. Величины полей описываются выражениями (6.3), а сила, действующая на пробный заряд со стороны источника, равна

$$f_{y} = -\frac{Gm_{0}^{2}\left(1 - \frac{v_{1}}{c}\frac{v}{c}\right)}{r_{y}^{2}\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

и направлена вдоль отрицательной оси У.

В соответствии с правилом преобразования силы (2.22) у-компонента силы в системе отсчета S' равна

$$f'_{y} = -\frac{Gm_{0}^{2}\left(1 - \frac{v_{1}}{c}\frac{v}{c}\right)}{r_{y}^{2}\sqrt{1 - \frac{v^{2}}{c^{2}}\sqrt{1 - \frac{V^{2}}{c^{2}}}}} = -\frac{Gm_{0}^{2}\left(1 - \frac{v_{1}}{c}\frac{v}{c}\right)}{r_{y}^{\prime 2}\sqrt{1 - \frac{v^{2}}{c^{2}}\sqrt{1 - \frac{V^{2}}{c^{2}}}}$$

и также направлена вдоль отрицательной оси y'. С помощью преобразования (1.9) с учетом (1.31) преобразуем это выражение. В результате

$$f'_{y} = -\frac{Gm_{0}^{2}\left(\left(1 - \frac{V}{c}\frac{v'_{1}}{c}\right)\left(1 - \frac{V}{c}\frac{v'}{c}\right) - \frac{v'_{1}}{c}\frac{v'}{c}\right)}{r'_{y}^{2}\sqrt{\left(1 - \frac{V}{c}\frac{v'}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}}},$$

где v'_1 - скорость пробного заряда $i\sqrt{G}m_0$ в системе отсчета S'.

Если теперь величинам $i\sqrt{G}m_0\left(1-\frac{V}{c}\frac{v'}{c}\right)$ и $i\sqrt{G}m_0\left(1-\frac{V}{c}\frac{v'_1}{c}\right)$, как и в прошлой задаче,

придать смысл эффективных поперечных гравитационных зарядов источника $i\sqrt{G}m_0$ и пробного заряда $i\sqrt{G}m_0$, то у-компонента гравитационного поля движущегося в системе отсчета *S*' гравитационного заряда $i\sqrt{G}m_0$ со скоростью v' будет описываться, как и в прошлой задаче, формулой (6.14). Оставшаяся часть выражения

$$f'_{y} = -\frac{Gm_{0}^{2} \frac{v'_{1} v'}{c c}}{r'_{y}^{2} \sqrt{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^{2} - \frac{{v'}^{2}}{c^{2}}}}$$

очевидно, будет описывать роторную силу, действующую в системе отсчета S' на движущийся со скоростью v'_1 пробный заряд $i\sqrt{G}m_0$ со стороны движущегося со скоростью v' источника $i\sqrt{G}m_0$, откуда для z-компоненты роторного поля получаем

$$H'_{z} = \frac{i\sqrt{G}m_{0}}{r'_{y}^{2}} \frac{1}{\sqrt{\left(1 - \frac{V}{c}\frac{v'}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}}} \frac{v'}{c}.$$
(6.17)

Аналогичное выражение можно получить и для у-компоненты поля r'_y . Оно будет точно таким же (кроме различия в знаке), если бы в момент времени t' = t = 0 пробный гравитационный заряд $i\sqrt{G}m_0$ находился на положительной оси z(z') системы отсчета S(S') на расстоянии $r_z(r'_z)$ от начала координат S(S').

Сравнивая теперь между собой выражения (6.17) и (6.3) и принимая, что хкомпонента роторного поля, как и х-компонента гравитационного поля при преобразовании не меняется, получаем правило преобразования роторного поля

$$H'_{x} = H_{x}, \quad H'_{y} = \frac{H_{y} + \frac{V}{c}g_{z}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad H'_{z} = \frac{H_{z} - \frac{V}{c}g_{y}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad (6.18)$$

откуда для обратного преобразования роторного поля с учетом (6.16) получаем

$$H_{x} = H'_{x}, \quad H_{y} = \frac{H'_{y} - \frac{V}{c}g'_{z}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad H_{z} = \frac{H'_{z} + \frac{V}{c}g'_{y}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}.$$
(6.19)

Для обратного преобразования гравитационного поля, очевидно, справедливо

$$g_x = g'_x, \quad g_y = \frac{g'_y + \frac{V}{c}H'_z}{\sqrt{1 - \frac{V^2}{c^2}}}, \quad g_z = \frac{g'_z - \frac{V}{c}H'_y}{\sqrt{1 - \frac{V^2}{c^2}}}.$$
 (6.20)

Модули векторов \boldsymbol{g} и \boldsymbol{g}' в системах отсчета S и S', очевидно, связаны преобразованиями

$$g' = g \sqrt{\cos^2 \theta + \left(1 - \frac{V}{c} \frac{v}{c}\right)^2 \frac{\sin^2 \theta}{\left(1 - \frac{V^2}{c^2}\right)}}$$
(6.21)

И

$$g = g' \sqrt{\cos^2 \theta' + \frac{\sin^2 \theta'}{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 \left(1 - \frac{V^2}{c^2}\right)}},$$
 (6.22)

а углы θ и θ' между векторами \boldsymbol{g} и \boldsymbol{g}' и положительными осями x и x' (вектором V)

$$\cos\theta' = \frac{\cos\theta}{\sqrt{\cos^2\theta + \left(1 - \frac{V}{c}\frac{v}{c}\right)^2 \frac{\sin^2\theta}{\left(1 - \frac{V^2}{c^2}\right)}}}$$
(6.23)

И

$$\cos\theta = \frac{\cos\theta'}{\sqrt{\cos^2\theta' + \frac{\sin^2\theta'}{\left(1 - \frac{V}{c}\frac{v'}{c}\right)^2 \left(1 - \frac{V^2}{c^2}\right)}}.$$
(6.24)

Направление вектора g' в общем случае, как видно, не совпадает с направлением радиусвектора r'. Однако при v' << V и V << c этим различием можно пренебречь.

Найдем теперь конфигурацию гравитационного поля гравитационного заряда $i\sqrt{G}m_0$,

наблюдаемую в системе отсчета S'. В системе отсчета S конфигурация гравитационного поля заряда $i\sqrt{G}m_0$ имеет вид (6.11). С помощью преобразований (1.5) и (1.7) при t' = 0, (1.31) и (6.22) преобразуем это выражение. В результате

$$g' = \frac{Q'}{r'^2} \frac{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}}{\left(\cos^2 \theta' + \left(\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}\right)\sin^2 \theta'\right)^{3/2}},$$

rge $Q' = i\sqrt{G}m_0 \left(1 - \frac{V}{c} \frac{v'}{c}\right) \frac{\sqrt{\left(1 - \frac{V^2}{c^2}\right)\cos^2 \theta' + \sin^2 \theta'}}{\sqrt{\left(1 - \frac{V^2}{c^2}\right)\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 \cos^2 \theta' + \sin^2 \theta'}}$. В общем случае, очевидно,
 $g' = \frac{Q'}{r'^2} \frac{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}}{\left(\cos^2 \theta'_{vr} + \left(\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}\right)\sin^2 \theta'_{vr}\right)^{\frac{3}{2}}},$ (6.25)
rge $Q' = i\sqrt{G}m_0 \left(1 - \frac{V}{c} \frac{v'}{c}\right) \frac{\sqrt{\left(1 - \frac{V^2}{c^2}\right)\cos^2 \theta'_{vr} + \sin^2 \theta'_{vr}}}{\sqrt{\left(1 - \frac{V^2}{c^2}\right)\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 \cos^2 \theta'_{vr} + \sin^2 \theta'_{vr}}},$ - угол между

вектором v' и радиус-вектором r' наблюдения. Это и есть конфигурация гравитационного поля заряда $i\sqrt{G}m_0$, наблюдаемая в системе отсчета S'.

Конфигурация роторного поля заряда $i\sqrt{G}m_0$ в системе отсчета S', очевидно, имеет вид

$$H' = \frac{i\sqrt{G}m_0}{r'^2} \frac{\left(1 - \frac{V}{c}\frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}}{\left(\cos^2\theta'_{vr} + \left(\left(1 - \frac{V}{c}\frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}\right)\sin^2\theta'_{vr}\right)^{\frac{3}{2}}}\frac{v'}{c}\sin\theta'_{vr}}.$$
 (6.26)

В теории анизотропного пространства, таким образом, гравитационному заряду

 $i\sqrt{G}m_0$, движущемуся в системе отсчета S' со скоростью v', можно соспоставить в общем случае гравитационный заряд равный

$$Q' = i\sqrt{G}m_0 \left(1 - \frac{V}{c}\frac{v'}{c}\right) \frac{\sqrt{\left(1 - \frac{V^2}{c^2}\right)}\cos^2\theta'_{vr} + \sin^2\theta'_{vr}}}{\sqrt{\left(1 - \frac{V^2}{c^2}\right)\left(1 - \frac{V}{c}\frac{v'}{c}\right)^2\cos^2\theta'_{vr} + \sin^2\theta'_{vr}}},$$
являющийся источником

мнимого гравитационного поля. Это совершенно новое теоретическое явление анизотропного характера, допускающее экспериментальную проверку и позволяющее измерить абсолютную скорость системы отсчета S' (в данном случае Земли) относительно абсолютного пространства находясь в системе отсчета S'.

6.6. 4-вектор потенциал. Преобразование потенциала. Потенциал Льенара-Вихерта

По аналогии с параграфом 3.6 для решения системы уравнений Максвелла (методом запаздывающих потенциалов) в системе отсчета *S* введем векторный *A* и скалярный [©] потенциалы, которые в гауссовой системе единиц удовлетворяют волновым уравнениям Даламбера

$$\left[\nabla_{c}^{2} - \frac{\partial^{2}}{\partial(ct)^{2}}\right]\boldsymbol{A} = -\frac{4\pi}{c}\boldsymbol{j}, \quad \left[\nabla_{c}^{2} - \frac{\partial^{2}}{\partial(ct)^{2}}\right]\boldsymbol{\varphi} = -4\pi\,\boldsymbol{\rho}$$
(6.27)

с правыми частями, содержащими плотность \hat{J} тока и плотность ρ заряда. На волновые уравнения (6.27) наложим так называемое условие калибровки Лоренца

$$\nabla_{c} \mathbf{A} + \frac{\partial}{\partial(ct)} \varphi = 0.$$
 (6.28)

Объединим векторный A и скалярный $^{\emptyset}$ потенциалы в один

$$\boldsymbol{\Phi} = (\Phi_1, \Phi_2, \Phi_3, \Phi_4) = (\boldsymbol{A}, \boldsymbol{i} \boldsymbol{\varphi})$$

4- вектором потенциала в системе отсчета S' является, очевидно,

$$\boldsymbol{\varPhi}' \equiv \left(\Phi_1', \Phi_2', \Phi_3', \Phi_4' \right) = \left(\boldsymbol{A}', i\varphi' \right).$$

И введем световые четырехмерные дифференциальные операторы

$$\boldsymbol{D}_{c} = (D_{c1}, D_{c2}, D_{c3}, D_{c4}) = \left(\frac{\partial}{\partial R_{c1}}, \frac{\partial}{\partial R_{c2}}, \frac{\partial}{\partial R_{c3}}, \frac{\partial}{\partial R_{c4}}\right) = \left(\nabla_{c}, \frac{\partial}{\partial (ict)}\right)$$

И

$$\boldsymbol{D}_{c}' = (D_{c1}', D_{c2}', D_{c3}', D_{c4}') = \left(\frac{\partial}{\partial R_{c1}'}, \frac{\partial}{\partial R_{c2}'}, \frac{\partial}{\partial R_{c3}'}, \frac{\partial}{\partial R_{c4}'}\right) = \left(\nabla_{c}', \frac{\partial}{\partial (ic't')}\right),$$

где $\nabla_c = \left(\frac{\partial}{\partial x_c}, \frac{\partial}{\partial y_c}, \frac{\partial}{\partial z_c}\right), \nabla'_c = \left(\frac{\partial}{\partial x'_c}, \frac{\partial}{\partial y'_c}, \frac{\partial}{\partial z'_c}\right)$ - обычные трехмерные операторы. Тогда

волновые уравнения Даламбера (6.27) в четырехмерной форме записываются как

$$\boldsymbol{D}_c^2\boldsymbol{\Phi}=-\frac{4\pi}{c}\boldsymbol{J},$$

где в качестве источника (правая часть уравнения) выступает 4-вектор тока

$$\boldsymbol{J} = (J_1, J_2, J_3, J_4) = \boldsymbol{U} \rho_0 = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} (\boldsymbol{v} \rho_0, i c \rho_0) = (\boldsymbol{j}, i c \rho),$$

а калибровка Лоренца (6.28) как

$$\boldsymbol{D}_{c}\boldsymbol{\Phi}=0$$

Волновые уравнения Даламбера в системе отсчета S', очевидно, записываются как

$$\boldsymbol{D}_{c}^{\prime 2}\boldsymbol{\Phi}^{\prime}=-\frac{4\pi}{c}\boldsymbol{J}^{\prime},$$

где в качестве источника (правая часть уравнения) выступает 4-вектор тока

$$\boldsymbol{J}' \equiv (J_1', J_2', J_3', J_4') = \boldsymbol{U}' \boldsymbol{\rho}_0 = \frac{1}{\sqrt{\left(1 - \frac{\boldsymbol{V}}{c} \frac{\boldsymbol{v}'}{c}\right)^2 - \frac{{v'}^2}{c^2}}} \left(\boldsymbol{v}' \boldsymbol{\rho}_0, \quad \boldsymbol{i} \left(1 - \frac{\boldsymbol{V}}{c} \frac{\boldsymbol{v}'}{c}\right) c \boldsymbol{\rho}_0\right) = (\boldsymbol{j}', \quad \boldsymbol{i} c \boldsymbol{\rho}'),$$

а калибровка Лоренца как

$$\boldsymbol{D}_{c}^{\prime}\boldsymbol{\Phi}^{\prime}=0$$

В явном виде это переписывается как

$$\left[\nabla_{c}'^{2} - \frac{\partial^{2}}{\partial(c't')^{2}}\right]A' = -\frac{4\pi}{c}\mathbf{j}', \quad \left[\nabla_{c}'^{2} - \frac{\partial^{2}}{\partial(c't')^{2}}\right]\varphi' = -4\pi\rho'$$

И

$$\nabla' \mathbf{A}' + \frac{\partial}{\partial(c't')} \varphi' = 0.$$

Если источником запаздывающего потенциала является точечный гравитационный заряд $i\sqrt{G}m_0$, находящийся в начальный момент времени в начале координат S(S'), 4-вектором потенциала Льенара-Вихерта в системе отсчета S является

$$\boldsymbol{\Phi} = -i\sqrt{G}m_0\frac{\boldsymbol{U}}{\boldsymbol{U}\boldsymbol{R}_c},$$

где $R_c = (r_c, ict)$ - 4-вектор события регистрации поля в системе отсчета S, в системе отсчета S'

$$\boldsymbol{\Phi}' = -i\sqrt{G}m_0 \frac{\boldsymbol{U}'}{\boldsymbol{U}'\boldsymbol{R}_c'},$$

где $\mathbf{R}'_c = (\mathbf{r}'_c, ic't')$ - 4-вектор события регистрации поля в системе отсчета S'. В развернутом виде это переписывается как

$$A = \frac{i\sqrt{G}m_0 \mathbf{v}}{c\left(r_c - \frac{\mathbf{v}r_c}{c}\right)}, \quad \emptyset = \frac{i\sqrt{G}m_0}{\left(r_c - \frac{\mathbf{v}r_c}{c}\right)}$$
(6.29)

И

$$A' = \frac{i\sqrt{G}m_0v'}{\left(1 - \frac{V}{c}\frac{v'}{c}\right)c} \left(r'_c - \frac{v'r'_c}{\left(1 - \frac{V}{c}\frac{v'}{c}\right)c}\right), \quad \varphi' = \frac{i\sqrt{G}m_0}{\left(r'_c - \frac{v'r'_c}{\left(1 - \frac{V}{c}\frac{v'}{c}\right)c}\right)}.$$
(6.30)

Оператор **D**_c, очевидно, преобразуется матрицами преобразования Лоренца (1.39) и (1.40). Из (6.29) и (6.30) вытекает, что и 4-вектор потенциал также преобразуется матрицами преобразования Лоренца (1.39) и (1.40). В развернутом виде это переписывается как

$$A'_{x} = \frac{A_{x} - \frac{V}{c}\varphi}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad A'_{y} = A_{y}, \quad A'_{z} = A_{z}, \quad \varphi' = \frac{\varphi - \frac{V}{c}A_{x}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}$$
(6.31)

$$A_{x} = \frac{A'_{x} + \frac{V}{c}\varphi'}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad A_{y} = A'_{y}, \quad A_{z} = A'_{z}, \quad \varphi = \frac{\varphi' + \frac{V}{c}A'_{x}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}.$$
(6.32)

Очевидно, 4-вектор тока также преобразовывается матрицами преобразования Лоренца (1.39) и (1.40). В развернутом виде это переписывается как

$$j'_{x} = \frac{j_{x} - \frac{V}{c}c\rho}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad j'_{y} = j_{y}, \quad j'_{z} = j_{z}, \quad c\rho' = \frac{c\rho - \frac{V}{c}j_{x}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}$$

И

$$j_{x} = \frac{j'_{x} + \frac{V}{c}c\rho'}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}, \quad j_{y} = j'_{y}, \quad j_{z} = j'_{z}, \quad c\rho = \frac{c\rho' + \frac{V}{c}j'_{x}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}}.$$

6.7. Функция Лагранжа для гравитационного заряда в гравитационном поле

В системе отсчета *S* действие для гравитационного заряда $i\sqrt{G}m_0$ в гравитационном поле, очевидно, имеет вид

$$\int_{a}^{b} \left(im_0 c ds + \frac{i\sqrt{G}m_0}{c} \Phi_i dR_i \right) = \int_{t_1}^{t_2} \left(-m_0 c^2 \sqrt{1 - \frac{v^2}{c^2}} + \frac{i\sqrt{G}m_0}{c} Av - i\sqrt{G}m_0 \varphi \right) dt,$$

где m_0 - собственная масса заряда, а интеграл берется вдоль мировой линии между двумя заданными событиями a и b – нахождением частицы в начальном и конечном местах в определенные моменты времени t_1 и t_2 , подынтегральное выражение которого, очевидно, есть функция Лагранжа для гравитационного заряда в гравитационном поле

$$L = -m_0 c^2 \sqrt{1 - \frac{v^2}{c^2}} + \frac{i\sqrt{G}m_0}{c} Av - i\sqrt{G}m_0 \phi .$$
 (6.33)

В системе отсчета S' действие для гравитационного заряда $i\sqrt{G}m_0$ в гравитационном поле, очевидно, имеет вид

$$\int_{a}^{b} \left(im_{0}cds' + \frac{i\sqrt{G}m_{0}}{c} \Phi_{i}'dR_{i}' \right) = \int_{t_{1}'}^{t_{2}'} \left(-m_{0}c^{2}\sqrt{\left(1 - \frac{V}{c}\frac{v'}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}} + \frac{i\sqrt{G}m_{0}}{c}A'v' - i\sqrt{G}m_{0}\varphi'\left(1 - \frac{V}{c}\frac{v'}{c}\right) \right) dt',$$

где m_0 - собственная масса заряда, а интеграл берется вдоль мировой линии между двумя заданными событиями *a* и *b* – нахождением частицы в начальном и конечном местах в определенные моменты времени t'_1 и t'_2 , подынтегральное выражение которого, очевидно, есть функция Лагранжа для гравитационного заряда в гравитационном поле

$$L' = -m_0 c^2 \sqrt{\left(1 - \frac{V}{c} \frac{v'}{c}\right)^2 - \frac{v'^2}{c^2}} + \frac{i\sqrt{G}m_0}{c} A'v' - i\sqrt{G}m_0 \varphi' \left(1 - \frac{V}{c} \frac{v'}{c}\right).$$
(6.34)

6.8. Уравнение движения гравитационного заряда в гравитационном поле

Уравнения движения заряда $i\sqrt{G}m_0$ в системах отсчета *S* и *S'*, как известно, даются уравнениями Лагранжа

$$\frac{d}{dt}\frac{\partial L}{\partial v} = \frac{\partial L}{\partial r}$$

И

$$\frac{d}{dt'}\frac{\partial L'}{\partial v'} = \frac{\partial L'}{\partial r'}$$

Производные $\frac{\partial L}{\partial v}$ и $\frac{\partial L'}{\partial v'}$ есть, очевидно, обобщенные импульсы заряда $i\sqrt{G}m_0$

$$\boldsymbol{P} = \frac{\partial L}{\partial \boldsymbol{v}} = \boldsymbol{p} + \frac{i\sqrt{Gm_0}}{c}\boldsymbol{A}$$

И

$$\boldsymbol{P}' = \frac{\partial L'}{\partial \boldsymbol{v}'} = \boldsymbol{p}' + \frac{i\sqrt{G}m_0}{c} \left(\boldsymbol{A}' + \frac{\boldsymbol{V}}{c}\boldsymbol{\varphi}'\right).$$

Производные
$$\frac{\partial L}{\partial r}$$
 и $\frac{\partial L'}{\partial r'}$ есть

$$\frac{\partial L}{\partial r} = \frac{i\sqrt{G}m_0}{c} \left(v \frac{\partial}{\partial r} \right) A + \frac{i\sqrt{G}m_0}{c} [v \operatorname{rot} A] - i\sqrt{G}m_0 \frac{\partial \varphi}{\partial r}$$
90

$$\frac{\partial L'}{\partial \mathbf{r}'} = \frac{i\sqrt{G}m_0}{c} \left(\mathbf{v}'\frac{\partial}{\partial \mathbf{r}'}\right) \mathbf{A}' + \frac{i\sqrt{G}m_0}{c} \left[\mathbf{v}'\operatorname{rot}\mathbf{A}'\right] - i\sqrt{G}m_0 \left(1 - \frac{\mathbf{V}}{c}\frac{\mathbf{v}'}{c}\right) \frac{\partial \varphi'}{\partial \mathbf{r}'},$$

откуда для уравнений Лагранжа в системах отсчета S и S' получаем

$$\frac{d}{dt}\left(\mathbf{p}+\frac{i\sqrt{G}m_0}{c}\mathbf{A}\right)=\frac{i\sqrt{G}m_0}{c}\left(\mathbf{v}\frac{\partial}{\partial \mathbf{r}}\right)\mathbf{A}+\frac{i\sqrt{G}m_0}{c}[\mathbf{v}\operatorname{rot}\mathbf{A}]-i\sqrt{G}m_0\frac{\partial \varphi}{\partial \mathbf{r}}$$

И

$$\frac{d}{dt'}\left(\mathbf{p}'+\frac{i\sqrt{G}m_0}{c}\left(\mathbf{A}'+\frac{\mathbf{V}}{c}\mathbf{\varphi}'\right)\right)=\frac{i\sqrt{G}m_0}{c}\left(\mathbf{v}'\frac{\partial}{\partial\mathbf{r}'}\right)\mathbf{A}'+\frac{i\sqrt{G}m_0}{c}\left[\mathbf{v}'\operatorname{rot}\mathbf{A}'\right]-i\sqrt{G}m_0\left(1-\frac{\mathbf{V}}{c}\frac{\mathbf{v}'}{c}\right)\frac{\partial\mathbf{\varphi}'}{\partial\mathbf{r}'}.$$

Так как

$$\frac{d}{dt}\left(\frac{i\sqrt{G}m_0}{c}A\right) = i\sqrt{G}m_0\frac{\partial A}{\partial(ct)} + \frac{i\sqrt{G}m_0}{c}\left(v\frac{\partial}{\partial r}\right)A$$

И

$$\frac{d}{dt'}\left(\frac{i\sqrt{G}m_0}{c}\left(\mathbf{A}'+\frac{\mathbf{V}}{c}\mathbf{\varphi}'\right)\right)=i\sqrt{G}m_0\frac{\partial\mathbf{A}'}{\partial(ct')}+\frac{i\sqrt{G}m_0}{c}\left(\mathbf{v}'\frac{\partial}{\partial\mathbf{r}'}\right)\mathbf{A}'+i\sqrt{G}m_0\frac{\mathbf{V}}{c}\frac{\partial\mathbf{\varphi}'}{\partial(ct')},$$

то подставляя это в предыдущие уравнения, получаем

$$\frac{d\boldsymbol{p}}{dt} = -\frac{i\sqrt{G}m_0}{c}\frac{\partial \boldsymbol{A}}{\partial t} - i\sqrt{G}m_0\frac{\partial \boldsymbol{\varphi}}{\partial \boldsymbol{r}} + \frac{i\sqrt{G}m_0}{c}[\boldsymbol{v}\operatorname{rot}\boldsymbol{A}]$$
(6.35)

И

$$\frac{d\mathbf{p}'}{dt'} = -\frac{i\sqrt{G}m_0}{c}\frac{\partial\left(\mathbf{A}' + \varphi'\frac{\mathbf{V}}{c}\right)}{\partial t'} - i\sqrt{G}m_0\left(1 - \frac{\mathbf{V}}{c}\frac{\mathbf{v}'}{c}\right)\frac{\partial\varphi'}{\partial\mathbf{r}'} + \frac{i\sqrt{G}m_0}{c}[\mathbf{v}' \operatorname{rot} \mathbf{A}'] \cdot$$
(6.36)

Это и есть, таким образом, уравнения движения гравитационного заряда $i\sqrt{G}m_0$ в

гравитационном поле в теории анизотропного пространства. Слева стоит производная от импульса заряда по времени, выражение в правой части есть сила, действующая на заряд в гравитационном поле.

6.9. Уравнение движения спутника в гравитационном поле Земли

Предположим, что в плоскости x'z' вокруг Земли (Земля находится в начале

И

координат системы отсчета S') обращается искусственный спутник Земли. Уравнение движения спутника в гравитационном поле Земли имеет вид (6.36). Потенциал φ' Земли согласно формуле (6.30) при $m_0 << M_0$, где m_0 - собственная масса спутника, M_0 - собственная масса Земли, равен

$$\varphi' = \frac{i\sqrt{G}M_0}{r'}, \qquad (6.37)$$

где r' - расстояние от центра Земли до спутника, потенциал A' Земли равен нулю

$$A' = 0$$
. (6.38)

Подставляя формулы (6.37), (6.38) и (2.39) в уравнение (6.36) получаем

$$\frac{a' - \left(\frac{V}{c}a'\right)\frac{V}{c}}{\sqrt{\left(1 - \frac{V}{c}\frac{v'}{c}\right)^{2} - \frac{{v'}^{2}}{c^{2}}}} + \frac{\left(\left(1 - \frac{V}{c}\frac{v'}{c}\right)\frac{V}{c}a' + \frac{v'}{c}a'\right)\left(\left(1 - \frac{V}{c}\frac{v'}{c}\right)\frac{V}{c} + \frac{v'}{c}\right)}{\left(\left(1 - \frac{V}{c}\frac{v'}{c}\right)^{2} - \frac{{v'}^{2}}{c^{2}}\right)^{3/2}} = -\frac{GM_{0}\left(1 - \frac{V}{c}\frac{v'}{c}\right)}{r'^{3}}r', (6.39)$$

где a' - ускорение спутника, v' - скорость спутника. При V = 0 это уравнение переходит в

$$\frac{a}{\sqrt{1-\frac{v^2}{c^2}}} + \frac{\left(\frac{v}{c}a\right)\frac{v}{c}}{\left(1-\frac{v^2}{c^2}\right)^{3/2}} = -\frac{GM_0}{r^3}r.$$
(6.40)

(В ОТО, как известно, уравнение движения спутника в гравитационном поле Земли имеет вид

$$\frac{a}{\sqrt{1-\frac{v^2}{c^2}}} + \frac{\left(\frac{v}{c}a\right)\frac{v}{c}}{\left(1-\frac{v^2}{c^2}\right)^{3/2}} = -\frac{GM_0}{r^3\sqrt{1-\frac{v^2}{c^2}}} \left[\left(1+\frac{v^2}{c^2}\right)r - \left(r\frac{v}{c}\right)\frac{v}{c} \right].$$

В координатной форме уравнения движения спутника в системах отсчета S' и S записываются в виде

$$\begin{cases} \frac{a'_{x} - \left(\frac{V}{c}a'_{x}\right)\frac{V}{c}}{\sqrt{\left(1 - \frac{V}{c}\frac{v'_{x}}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}} + \frac{\left(\left(1 - \frac{V}{c}\frac{v'_{x}}{c}\right)\frac{V}{c}a'_{x} + \frac{v'}{c}a'\right)\left(\left(1 - \frac{V}{c}\frac{v'_{x}}{c}\right)\frac{V}{c} + \frac{v'_{x}}{c}\right)}{\left(\left(1 - \frac{V}{c}\frac{v'_{x}}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}\right)^{3/2}} = -\frac{GM_{0}\left(1 - \frac{V}{c}\frac{v'_{x}}{c}\right)}{r'^{3}}x', \\ \frac{a'_{z}}{\sqrt{\left(1 - \frac{V}{c}\frac{v'_{x}}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}} + \frac{\left(\left(1 - \frac{V}{c}\frac{v'_{x}}{c}\right)\frac{V}{c}a'_{x} + \frac{v'}{c}a'\right)\frac{v'_{z}}{c}}{\left(\left(1 - \frac{V}{c}\frac{v'_{x}}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}\right)^{3/2}} = -\frac{GM_{0}\left(1 - \frac{V}{c}\frac{v'_{x}}{c}\right)}{r'^{3}}z' \\ \frac{\left(\left(1 - \frac{V}{c}\frac{v'_{x}}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}\right)^{3/2}}{\left(\left(1 - \frac{V}{c}\frac{v'_{x}}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}\right)^{3/2}} = -\frac{GM_{0}\left(1 - \frac{V}{c}\frac{v'_{x}}{c}\right)}{r'^{3}}z' \end{cases}$$

И

$$\begin{cases} \frac{a_x}{\sqrt{1-\frac{v^2}{c^2}}} + \frac{\left(\frac{v}{c}a\right)\frac{v_x}{c}}{\left(1-\frac{v^2}{c^2}\right)^{3/2}} = -\frac{GM_0}{r^3}x, \\ \frac{a_z}{\sqrt{1-\frac{v^2}{c^2}}} + \frac{\left(\frac{v}{c}a\right)\frac{v_z}{c}}{\left(1-\frac{v^2}{c^2}\right)^{3/2}} = -\frac{GM_0}{r^3}z. \end{cases}$$

Решая систему уравнений относительно a' и a, находим компоненты векторов a' и a:

$$\begin{cases} a'_{x} = \frac{GM_{0} \left(1 - \frac{V}{c} \frac{v'_{x}}{c}\right) \sqrt{\left(1 - \frac{V}{c} \frac{v'_{x}}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}}{r'^{3}} \left(\left(\left(1 - \frac{V}{c} \frac{v'_{x}}{c}\right) \frac{V}{c} + \frac{v'_{x}}{c}\right) \frac{v'_{z}}{c} z' - \left(\left(1 - \frac{V}{c} \frac{v'_{x}}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}}{c^{2}}\right) x' \right), \\ a'_{z} = \frac{GM_{0} \left(1 - \frac{V}{c} \frac{v'_{x}}{c}\right) \sqrt{\left(1 - \frac{V}{c} \frac{v'_{x}}{c}\right)^{2} - \frac{v'^{2}}{c^{2}}}{r'^{3}}}{r'^{3}} \left(\left(\left(1 - \frac{V}{c} \frac{v'_{x}}{c}\right) \frac{V}{c} + \frac{v'_{x}}{c}\right) \frac{v'_{z}}{c} x' - \left(1 + \frac{V^{2}}{c^{2}} \frac{v'^{2}}{c^{2}} - \frac{v'^{2}}{c^{2}}}{c^{2}}\right) z' \right) \end{cases}$$

И

$$\begin{cases} a_x = \frac{GM_0\sqrt{1 - \frac{v_x^2}{c^2} - \frac{v_z^2}{c^2}}}{r^3} \left(\frac{v_x}{c} \frac{v_z}{c} z - \left(1 - \frac{v_x^2}{c^2}\right)x\right), \\ a_z = \frac{GM_0\sqrt{1 - \frac{v_x^2}{c^2} - \frac{v_z^2}{c^2}}}{r^3} \left(\frac{v_x}{c} \frac{v_z}{c} x - \left(1 - \frac{v_z^2}{c^2}\right)z\right). \end{cases}$$

Как показывает численное моделирование, спутник на геостационарной орбите будет двигаться по круговой орбите радиуса 4216953908 см со скоростью 307505.4877 см/с.

В заключение, автор выражает благодарность А.М. Чепику за ряд критических

замечаний.

Литература

- 1. Н.В. Купряев, Доклады независимых авторов Вып.1, 74 ("DNA", Россия-Израиль (2005)).
- 2. Б.М. Кужевский, О.Ю. Нечаев, Е.А. Сигаев, Вестник Московского университета. Серия 3. Физика. Астрономия № 1, 55 (2002).
- 3. С.Э. Шноль, В.А. Коломбет, Э.В. Пожарский и др., УФН 168, 1129 (1998).
- 4. Ю.А. Бауров, Е.Ю. Клименко, С.И. Новиков, ДАН 315, 1116 (1990).
- 5. Ю.А. Бауров, П.М. Рябов, ДАН **326**, 73 (1992).
- 6. М.В. Сажин, УФН 174, 197 (2004).
- 7. В.С. Троицкий, ДАН **350**, 191 (1996).
- 8. С.Л. Парновский, Ю.Н. Кудря, А.Н. Александров, ЖЭТФ 106, 1559 (1994).
- 9. Ю.Н. Ерошенко, УФН 167, 688 (1997).
- 10. В.М. Лобашев, Вестн. РАН 73, 14 (2003).
- 11. Н.В. Купряев, Доклады независимых авторов Вып.1, 119 ("DNA", Россия-Израиль, 2005).
- 12. Н.В. Купряев, Изв. вузов. Физика №7, 8 (1999).
- 13. Ю.А. Обухов, И. И. Захарченко, Физическая мысль России №3, 71 (2001).
- 14. Я.П. Докучаев, П. Г. Демидова, История науки и техники №5, 58 (2004).
- 15. А.В. Шепелев, УФН 175, 105 (2005).
- 16. Н.В. Купряев, Доклады независимых авторов Вып.1, 115 ("DNA", Россия-Израиль, 2005).
- 17. Н.В. Купряев, Доклады независимых авторов Вып.1, 122 ("DNA", Россия-Израиль, 2005).
- 18. В.Д. Скаржинский, Труды ФИАН 167, 139 (1986).
- 19. Н.В. Купряев, Изв. вузов. Физика №10, 8 (2006).
- 20. Н.В. Кравцов, В. В. Рагульский, Квантовая электроника 30,1025 (2000).
- 21. В.В. Рагульский, Изв. АН. Серия физическая **63**, 818 (1999).
- 22. Н.В. Купряев, Доклады независимых авторов Вып.2, 64 ("DNA", Россия-Израиль, 2005).
- 23. Дж. Андерсон, Ф. Лаинг, Э. Лау, М. Ньето, С. Туришев, Земля и Вселенная №5, 78 (2002). (Anderson By John D, Laing Philip A, Lau Eunice L, Nieto Michael Martin, Turyshev Slava G *The strange acceleration of Pioneer 10 and 11*, The planetary report November/December, 12 (2001)).
- 24. Г.Б. Малыкин, УФН 170, 1325 (2000).
- 25. А.А. Логунов, Ю.В. Чугреев, УФН 156, 137 (1988).
- 26. Г.Б. Малыкин, УФН 172, 969 (2002).
- 27. Н.В. Купряев, Изв. Вузов. Физика №8, 63 (2001).
- 28. Н.В. Купряев, Доклады независимых авторов Вып.1, 94 ("DNA", Россия-Израиль, 2005).
- 29. Н.В. Купряев, Доклады независимых авторов Вып.1, 83 ("DNA", Россия-Израиль, 2005).
- 30. Н.В. Купряев, Доклады независимых авторов Вып.1, 111 ("DNA", Россия-Израиль (2005)).
- 31. Gryzinski М. Поиск математических закономерностей мироздания, (М.М. Лаврентьев), Новосибирск, (2001), с. 154.
- 32. Ю.Н. Ерошенко, УФН 177, 230 (2007).
- 33. Н.В. Купряев, Доклады независимых авторов Вып.3, 136 ("DNA", Россия-Израиль (2006)).