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We introduce a class of light field that angularly accelerates during propagation. We show that the acceleration
(deceleration) may be controlled by adjustment of a single parameter, and tuned continuously, down to no
acceleration at all. As the angular acceleration takes place in a bounded space, the azimuthal degree of freedom,
such fields accelerate periodically as they propagate. Notably, the amount of angular acceleration is not limited
by paraxial considerations, may be tailored for large accelerations over arbitrarily long distances, and can be
engineered independently of the beam’s spatial extent. We discuss how such angularly accelerating light fields
can maintain the conservation of angular momentum through an energy exchange mechanism across the field.

DOI: 10.1103/PhysRevA.91.043821 PACS number(s): 42.25.Bs, 42.40.Jv, 42.60.Jf

I. INTRODUCTION

The concept of accelerating light at first appears in-
compatible with the fact that light travels at a constant
speed and in a straight line. But it has been shown that if
specific features of the fields are considered in isolation, then
strange and counterintuitive propagation characteristics can
be realized. Present examples all consider features of the field
that appear to transversely accelerate as they propagate [1].
These include the now well-known Airy beams [2], whose
intensity peak follows a parabolic path through space even if
the centroid itself obeys rectilinear propagation. Such fields
suffer from rapid deviation from the paraxial approximation
due to the constantly changing propagation angle. Thus
while they exhibit interesting transverse acceleration, which
has seen them applied in a range of fields from particle
manipulation [3], spatial-temporal beam control [4,5], and
plasma control [6] to nonlinear optics [7–9], this deviation
from the paraxial approximation is a limiting factor. More
recently two-dimensional parabolic accelerating beams have
been found to overcome some of these limitations, as well
as nonparaxial transversely accelerating beams in the form
of Weber beams [10,11], Mathieu beams [11], Bessel beams
[12–14], vector beams [15–17], and beams with arbitrary
transverse shapes [18]. Such beams have been demonstrated
both with continuous waves and ultrashort pulses [19] and were
shown to preserve their shape even in nonlinear media [20].
The accelerating properties are not limited to photons: some
of the previously mentioned concepts have been implemented
as nonoptical wave packets with electrons [21]. Nevertheless,
by definition the transverse acceleration is always coupled to
the lateral extent of the field: higher acceleration implies large
propagation angles, and thus more of the transverse plane,
which is an unbounded space, is used.

One way to overcome these limitations is to confine
the motion to the azimuthal degree of freedom by creating
rotating light fields. Since the azimuthal degree of freedom
is bounded, the size of the field can be selected independent

*Corresponding author: aforbes1@csir.co.za

of the amount of rotation desired (one can spin about a circle
indefinitely regardless of the circle radius). The theory for such
rotating fields of constant angular velocity has been extensively
developed [22] and generalized recently in the context of radial
self-acceleration [23]. Such beams have been experimentally
investigated in great detail [24–32]. The intensity maxima of
these fields gyrate around the optical axis, forming a solenoidal
shape, which has been used for the transport of trapped
particles [33–35]. But since this motion is at a constant angular
velocity, there is no angular acceleration.

Here we demonstrate controlled acceleration of a beam’s
rotation. Note that this type of acceleration is entirely different
from the transverse acceleration discussed before. We tailor
our “twisted light” (fields carrying orbital angular momentum)
to have a nonlinear phase variation with azimuthal angle, which
we show is the building block for angular accelerating light.
The degree of nonlinearity determines the magnitude of the
angular acceleration and deceleration, which may readily be
tuned by adjusting a single parameter. This class of optical field
has the advantages that the acceleration is not directly coupled
to the size of the field and may be tuned to very high values,
there is no limit on the amount of rotation that can be tolerated,
and consequently the angular acceleration or deceleration may
continue for arbitrarily long distances and used in applications
where tight focusing is required, e.g., optical trapping and
tweezing and optically driven flow for optofluidics.

II. THEORY

We recall that light fields with a phase factor of exp(i�ϕ),
where ϕ is the azimuthal angle and � the topological charge
of the field, carry orbital angular momentum (OAM) of �� per
photon [36]. Such fields are variously referred to as vortex or
twisted light because of the helical phase fronts of helicity �.
Examples of such fields are found as the familiar Laguerre-
Gaussian [37] and Bessel-Gaussian beams [38,39], and have
been studied and applied in both the classical and quantum
regimes. There is a phase singularity (and intensity null) at the
center of the beam where a vortex of order � is to be found.
Figures 1(a)–1(c) show examples of such vortex phase profiles
for � = 1, 2, and 3. These are isotropic vortex phase profiles,
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FIG. 1. (Color online) (a)–(c) Isotropic vortex phases for � =
1, 2, and 3, respectively. (d)–(f) Anisotropic vortex phases for
� = 1, 2, and 3, respectively. (g) A plot of the phase as a function
of azimuthal angle for an isotropic (blue) and an anisotropic (black)
vortex of order � = 2. (h) Schematic showing the superposition of
two Bessel beams as intensities (with anisotropic vortex phase as
insets) and the resulting intensity petal structure, for � = 3.

and, pertinently, they vary linearly with the azimuthal angle,
with slope �, following ψ(ϕ) = �ϕ, where ψ is the phase.

A. Linear rotation

When superpositions of such isotropic vortex beams are
created, they can be engineered [22,24–31] to produce nonro-
tationally symmetric intensity patterns that rotate at a constant
angular velocity. This can, for instance, be done by adding
two isotropic vortex beams with opposite azimuthal indices
�1 = −�2 and slightly different propagation constants (slightly
different values of kz). Factoring out the parts that are different
in the ϕ and z dependences of these two beams, we obtain

exp[i(�ϕ − z�kz)] + exp[−i(�ϕ − z�kz)]

∝ cos(�ϕ − z�kz), (1)

where �kz = (kz1 − kz2)/2. The orientation of the intensity
profile of the superposition rotates as a function of propagation
distance,

φ(z) = z�kz

�
, (2)

where φ(z) represents the orientation of the intensity profile.
This results in a constant angular velocity of

dφ(z)

dz
= �kz

�
, (3)

but no angular acceleration, since

d2φ(z)

dz2
= φ̈ = 0. (4)

It is the linear azimuthal phase that restricts the motion to
linear rotation. The linear rotation of the profile follows from
that fact that the optical current (gradient of the phase profile
times the intensity) [40], which governs the flow of the optical
power, is constant as a function of the azimuthal angle for
these isotropic phase profiles.

B. Nonlinear rotation

It thus follows that to obtain an angular acceleration of
the beam profile one needs a nonlinear variation in the phase
profile as a function of the azimuthal angle. This is visualized
by the examples presented in Figs. 1(d)–1(f) for � = 1, 2, and
3. To be a continuous function, the nonlinear phase profile
must be a periodic function so that ψ(0) = ψ(2π ). As a
result, the phase factor for a beam that would produce angular
acceleration could, for example, have the form

ψ(ϕ) = �ϕ + α cos(�ϕ), (5)

where α is an adjustable parameter that determines the
magnitude of the acceleration. Note that the second derivative
of ψ(ϕ) in Eq. (5) is nonzero, which indicates angular
(de)acceleration. For example, a superposition of the form

u ∝ exp{i[ψ(ϕ) + �kzz]} + exp{ −i[ψ(ϕ) + �kzz]}
= 2 cos[ψ(ϕ) + �kzz] (6)

will now have a stationary point in the field that varies non-
linearly with propagation distance: �φ(z) + α cos[�φ(z)] =
−�kzz. This results in a nonconstant angular velocity of
φ̇(z) = −�kz/[� − α sin �φ(z)], and also an angular accelera-
tion since φ̈ �= 0.

Plotting both the linear (isotropic) and nonlinear
(anisotropic) phase variations together [Fig. 1(g)], we note
that both are periodic about the azimuth.

C. Implementation

We create the desired anisotropic vortex fields [whose phase
profiles are depicted in Figs. 1(d)–1(f)] by a superposition of
two isotropic vortex beams with opposite helicities. Such a
combination can be written in terms of nondiffracting fields as

unl(r,ϕ,θ ) = A�(r)[cos(θ/2) exp(i�ϕ)

+ sin(θ/2) exp(−i�ϕ)] (7)

at z = 0, where A�(r) is some radial (r) enveloping function
and θ determines the morphology (anisotropy) of the optical
vortex on the axis of the beam. The morphology parameter θ

governs the relative weights of the two opposite topological
charges. For 0 < θ < π the overall topological charge is
positive and for π < θ < 2π it is negative. By adding two such
anisotropic nondiffracting vortex beams of differing phase
velocities (kz) and opposite morphology, the resulting field

u(r,ϕ,z) = unl(r,ϕ,θ ) exp(ikz1z)

+unl(r,ϕ,π − θ ) exp(ikz2z) (8)

will have a structured pattern (petals) in the azimuth (ϕ)
that rotates during propagation, with an angular velocity that
depends on z. This is shown schematically in Fig. 1(h) where
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the two anisotropic fields result in a petal-like structure about
the azimuth.

For convenience, and without any loss of generality, we will
discuss the implementation in the context of Bessel beams so
that A�(r) = J�(rkr ). Such fields are convenient as their radial
wave vector (kr ), and consequently kz, are easily controlled
with digital holograms, and are related by

kz =
√

k2 − k2
r , (9)

where k = 2π/λ is the wave number and λ is the wavelength
of the light. The superposition field Eq. (7) then becomes

u(r,ϕ,z) = J�(rkr1)[cos(θ/2) exp(i�ϕ)

+ sin(θ/2) exp(−i�ϕ)] exp(ikz1z)

+J�(rkr2)[sin(θ/2) exp(i�ϕ)

+ cos(θ/2) exp(−i�ϕ)] exp(ikz2z). (10)

The optical field in Eq. (10) consists of the superposition of
four Bessel beams—two pairs with slightly different values
of kr (and therefore slightly different values of kz). Each
pair is a superposition of two Bessel beams with opposite
azimuthal indices that produces an anisotropic optical vortex
in the center of the beam. This ensures both requirements:
nonlinear but periodic phase variation about the azimuth, as
shown in Fig. 1(g). It is easy to show that the angular position
of each petal rotates during propagation, following

φ(z) = 1

2|�| arctan

[
cos(θ ) sin(z�)

sin(θ ) + cos(z�)

]
, (11)

where � = kz2 − kz1. We note that the morphology parameter
θ acts as a tuning parameter that determines the degree of
nonlinearity, and therefore also the angular velocity of the
rotation. The latter can be shown to be

φ̇ = �

2|�|
cos(2θ )

1 + sin(2θ ) cos(z�)
, (12)

from which we may immediately find the angular acceleration:

φ̈ = �2

4|�|
sin(2θ ) sin(z�)

[1 + sin(θ ) cos(z�)]2
. (13)

III. EXPERIMENT

In our experiment a linearly polarized, single wavelength
(λ = 632.8 nm) helium-neon laser (Melles Griot) with a power
of 10 mW was expanded and collimated by a telescope
(fL1 = 15 mm and fL2 = 125 mm) to approximate a plane
wave. The plane wave illuminated a HoloEye Pluto spatial
light modulator (SLM) (1080 × 1920 pixels), with a pixel
size of 8 μm and which was calibrated for a wavelength
of 633 nm. The SLM was addressed with holograms of a
ring-slit aperture [41,42], encoded via complex amplitude
modulation [43]. Two ring-slit apertures were used, each
encoded with an anisotropic azimuthal phase variation of
opposite topological charge, respectively, with radii R1 = 179
pixels (1432 μm) and R2 = 195 pixels (1560 μm) and d = 11
pixels (88 μm) in width.

The Fourier transform of the field at the plane of the SLM
was obtained with the use of a lens: fL3 = 200 mm. In this
way we obtained the superposition of two Bessel beams with

FIG. 2. (Color online) (a) A Bessel beam can be formed by
illuminating a ring slit placed in the Fourier plane of a lens. (b)
To create a field comprising a single radial wave vector kr , a
single ring slit is illuminated. Superpositions of isotropic Bessel
beams with differing radial wave vectors simply require multiple
ring slits as shown in (c), while anisotropic superpositions require
amplitude modulation inside each of these ring slits, as shown in (d).
The corresponding intensities produced for each case are shown in
the insets.

opposite topological charges and with kr1 = 28428.1 m−1 and
kr2 = 30 969.2 m−1. A Bessel beam thus created is valid over
a finite propagation distance zmax = 2πω0/λkr , shown as the
shaded red region in Fig. 2(a). The resulting beam profile
was magnified with a 10× objective, which also acted as an
aperture to select only the first diffraction order which was
captured on a CCD camera (Point Grey fire-wire CCD). To
extract the petal position from the captured camera images,
the measured Bessel beams were compared to simulated beams
with the same number of petals, which were adapted in spatial
scale. The comparison was achieved in a quantitative manner
by evaluating a two-dimensional cross-correlation coefficient
when rotating the simulated patterns with respect to the
measured beam. The correct rotation angle of the measured
beam was found from a maximum of the correlation function.
To avoid ambiguities in the form of a multiple number of
correlation maxima, the simulated pattern was rotated within
the interval of 0◦ to 180◦/�. The fidelity of the process
was improved by iteratively refining the interval limits until
a chosen accuracy was achieved, which was 0.1◦ in the
experiments.

IV. RESULTS

A. Angular velocity and acceleration

The intensity patterns were recorded during propagation
and are shown for the linear and nonlinear cases in Figs. 3(a)
and 3(b) for superpositions of � = 1 and � = 3, respectively
(see the movies in the Supplemental Material [44]). The
predicted and measured angular position during propagation
for selected values of the morphology parameter θ are shown
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FIG. 3. (Color online) The intensity images in the top rows of (a) and (b) show the petal rotation at a fixed rate θ = 0, while the bottom
rows show the nonlinear rotation θ = π/3, for (a) � = 1 and (b) � = 3. The solid white lines indicate the movement of the petals in the linear
case and are overlaid on the nonlinear images for reference. The angular difference between the two cases (linear and nonlinear) is given as text
in each frame. The columns represent increasing propagation distances sampled from the zoomed-in data set of Fig. 4. The maximum beam
intensities in each frame were normalized to unity to aid comparison.

in Figs. 4(a) and 4(b), for � = 1 and � = 3, respectively, where
the theoretical predictions are validated by the experimental
results.

More importantly, the angular velocity and acceleration of
these fields have been confirmed experimentally, with results
shown in Fig. 5 for � = 1 and � = 3. As the field propagates
in the positive z direction, so the petal pattern rotates. The
angular velocity of this rotation changes during propagation
according to Eq. (12), following an oscillatory evolution. This
is evident in Figs. 5(a) and 5(b). The fact that the angular
velocity is oscillatory implies that the beam experiences both
acceleration and deceleration during propagation, which is
verified experimentally in Figs. 5(c) and 5(d).

B. Conservation of angular momentum

One may rightfully ask: How does an optical field that
undergoes angular accceleration maintain the conservation of
angular momentum? The answer to this question reveals an
interesting feature of such an optical field. It turns out that the
total optical field may be viewed as two separate structures that
perform independent rigid rotations. The dominant structure
with the petal pattern is located in the central region of the
beam. The other structure, which has rings, has a lower average
intensity and is spread over a larger area. Power is periodically
exchanged between the two structures. Each of these structures
gains and loses power in a manner that is directly coupled to
their angular acceleration. When one accelerates, the other one
decelerates and power is transferred from the accelerating one
to the decelerating one. In other words, a fast-rotating field
appears dim, while a slow-rotating field appears bright. This
exchange is measured and plotted in Figs. 6(a) and 6(b). Due
to this exchange of power and the fact that the two structures
take turns to accelerate or decelerate, the angular momentum
of the entire optical field can remain constant.

We now provide a more careful analysis of this behavior.
The intensity of the field in Eq. (10) can be expressed in terms
of the sum and difference of the two terms,

I(r,ϕ,z) = u(r,ϕ,z)u∗(r,ϕ,z)

= I�(r,ϕ,z) + I�(r,ϕ,z)

= 1
2R2

s (r)[1 + cos(2�ϕ − 2�s)]

× [1 + sin(θ ) cos(z�)]

+ 1
2R2

d(r)[1 + cos(2�ϕ − 2�d)]

× [1 − sin(θ ) cos(z�)], (14)

where

Rs(r) = J�(rkr1) + J�(rkr2), (15)

Rd(r) = J�(rkr1) − J�(rkr2), (16)

s = − 1

2�
arctan

[
cos(θ ) sin(z�)

sin(θ ) + cos(z�)

]
, (17)

d = 1

2�
arctan

[
cos(θ ) sin(z�)

sin(θ ) − cos(z�)

]
, (18)

� = kz2 − kz1. (19)

The sum term [first term in Eq. (14)] represents the part that
dominates in the central part of the beam (the inner region,
or petals), while the difference term [second term in Eq. (14)]
covers a larger area of the beam (the outer region, or rings).
From Eq. (14) we see that the sum and difference terms are each
modulated by a ϕ-dependent factor and a z-dependent factor.
The z-dependent factors of the two terms are out of phase so
that the sum and the difference terms alternate in brightness.
The ϕ-dependent factors represent a z-dependent orientation,
given by Eqs. (17) and (18) for the sum and difference terms,
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(a)

(b)

θ
θ  π
θ  π
θ  π

θ
θ  π
θ  π
θ  π

FIG. 4. (Color online) The rotation angle (φ) of the petal struc-
ture as the field propagated. The measured data (symbols) are shown
together with the theoretical predictions (lines) for various values of
the control parameter θ , from 0 (red), π/5 (black), π/4 (green), to
π/3 (blue). The rotation rate was observed to transition from constant
(θ = 0) to highly nonlinear (θ = π/3). Results are shown for two
different topological charge values of (a) � = 1 and (b) � = 3.

respectively. The rates at which these orientations change
(angular velocity) are given by

∂zs = −
(

�

2�

)
cos(θ )

1 + sin(θ ) cos(z�)
, (20)

∂zd = −
(

�

2�

)
cos(θ )

1 − sin(θ ) cos(z�)
, (21)

and the angular accelerations are found to be

∂2
z s = −

(
�2

4�

)
sin(2θ ) sin(z�)

[1 + sin(θ ) cos(z�)]2
, (22)

∂2
z d =

(
�2

4�

)
sin(2θ ) sin(z�)

[1 − sin(θ ) cos(z�)]2
. (23)

Comparing Eqs. (22) and (23) with the two terms in Eq. (14),
we see that the angular accelerations of the two parts are
inversely proportional to the squares of their z-dependent
intensity modulations. Therefore, the one that rotates slowly
is always brighter than the other one, which rotates fast.

2
2

(a)

(b)

(c)

(d)

FIG. 5. (Color online) The nonlinear azimuthal phase of the
anisotropic beam results in a rotation angle that varies nonlinearly
with propagation distance. This varying angular velocity imparts
angular acceleration to the field. The nonconstant angular velocity
is shown in (a) and (b) for � = 1 and � = 3, respectively, while the
resultant angular acceleration for these examples is shown in (c)
and (d). The measured data (circles) are in good agreement with the
theoretical predictions (solid curve).

C. Power exchange

The fact that the optical power in the two terms in Eq. (14)
varies as a function of propagation distance implies that
they exchange power during propagation. To understand this
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(a)

(b)

(θ=0)

(θ=π/5)
(θ=π/5)
(θ=π/4)
(θ=π/4)
(θ=π/3)
(θ=π/3)

(θ=0)

FIG. 6. (Color online) As the beam accelerates the energy in the
inner region (petals) is transported to the outer region (rings). This
process is reversed during deceleration. Because the field oscillates
between the two cases during propagation, there is a continuous flow
of energy in and out of the central petal structure of the field. (a)
The normalized energy in the two regions (petals and rings) of the
field during propagation for θ = 0 (red), θ = π/5 (black), θ = π/4
(green), and θ = π/3 (blue). (b) The measured maximum fractional
energy exchange as a function of θ . All data are for the � = 3 case.

exchange we use the intensity transport equation [45]

∂zI = 1

k
∇ · J, (24)

where

J = I ∇ψ, (25)

is the optical current [40], with ψ being the phase of the
optical field. The optical current is proportional to the Poynting
vector in the paraxial limit. The intensity transport equation
is a statement of energy (power) conservation: the change in
the local intensity is balanced by the divergence of the optical
current. If there were no exchange of optical power between
the sum and difference terms, each would have obeyed the
intensity transport equation separately. Instead what we find is
the following:

∂zI = ∂zI� + ∂zI� = 1

k
∇ · J� + 1

k
∇ · J� + V, (26)

where I� and I� are the intensities of the sum and difference,
as defined in Eq. (14), J� and J� are the optical currents

associated with the sum and difference, given by

J� = −I� β0 ẑ
(27)

J� = −I� β0 ẑ,

with β0 = (kz1 + kz2)/2, and V is a coupling term given by

V = − 1

2k

[
Rd∂

2
r Rs − Rs∂

2
r Rd

]
×[1 + sin(θ ) cos(2�ϕ)] sin(z� + c) (28)

with

c = arctan

[
cos(θ ) sin(2�ϕ)

sin(θ ) + cos(2�ϕ)

]
. (29)

Since the coupling term contains both Rs and Rd in each term,
it is responsible for the exchange of power between the sum
and difference terms during propagation.

V. DISCUSSION

The experimentally recorded spatial profiles in the bottom
rows of Figs. 3(a) and 3(b) demonstrate nonlinear rotation
when compared with the case where the same fields rotate at
a constant rate. This is observed by noting that the solid white
lines that intersect two geometrically opposite intensity peaks
in the top rows of Figs. 3(a) and 3(b) no longer intersect these
intensity peaks in the bottom rows. Instead, there is an angular
deviation with respects to the solid white line, illustrating that
these fields have rotated either faster or more slowly than those
presented in the top rows. Similarly, this transition from an
already studied, constant, linear rotation to a new, accelerating,
nonlinear rotation is depicted graphically in Fig. 4. Here, it is
evident that the rotation of these fields can be tuned from
being linear (constant) to being highly nonlinear (accelerat-
ing), by increasing the morphology parameter θ , defined in
Eq. (7).

The angular velocity of these experimentally generated
fields changes rapidly as they propagate, speeding up and
slowing down, reaching very high angular velocities. This
changing angular velocity [depicted in Figs. 5(a) and 5(b)]
implies an angular acceleration [Figs. 5(c) and 5(d)], the origin
of which resides in the phase structure of the superposition
field. Since the angular velocity is oscillatory, the beam expe-
riences both acceleration and deceleration during propagation.
The magnitude of the angular velocity [Eq. (12)] and angular
acceleration [Eq. (13)] is affected by both the topological
charge (�) of the beams in the superposition, as well as the
difference in their phase velocities. The tuning (morphology)
parameter θ determines whether the field will accelerate at all,
and to what extent.

Previously studied rotating fields are recovered by setting
θ = 0 or θ = π , since Eq. (7) then reduces to either one of
the two OAM fields having linear azimuthal phase variation.
In both cases, the petals rotate at a constant angular velocity,
given by φ̇ = �/2�. Such fields, having no acceleration, have
been studied in detail previously [24–32] and represent only a
special case of the more general angularly accelerating light,
described here.

The class of field reported here has some attractive
properties. First, we point out that the azimuthal degree
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of freedom (where the accelerating motion takes place) is
bounded and periodic. This means that the beam may continue
to spin and angularly accelerate without changing size. This
is in sharp contrast to transversely accelerating light where
the transverse plane is unbounded: more acceleration means
a larger portion of the plane, and consequently ever larger
beam sizes. This is a fundamental property of transversely
accelerating light since the peak intensity follows a parabolic
caustic (away from the centroid) while the centroid itself
remains rectilinear in propagation. Second, as a consequence
of the above, very large acceleration values may be realized
with angularly accelerating light, even when the field is tightly
focused, or the field size is small. Such fields will have obvious
applications in the optical control of microparticles [46–48]
and may even be extended to the nonoptical domain [49] and
nonlinear propagation [50,51] to explore additional physical
processes.

VI. CONCLUSION

A concept for the angular acceleration of light is outlined
and experimentally demonstrated. Our approach makes use of
superpositions of OAM fields created with digital holograms.
We show that the magnitude of the angular acceleration of
these fields can be tuned continuously with the aid of a
single morphology parameter. These fields have advantageous
features that overcome previous disadvantages of transversely
accelerating light: their feature sizes are not dictated by the
degree of acceleration, the angular extent of the acceleration
does not influence the paraxial nature of the field (the entire
azimuthal degree of freedom can be used), and they can be
engineered to extend over arbitrarily long distances. Given
the interest and applications of transversely accelerating
light, one can envisage many uses for this class of angular
accelerating light, for example, in studies of the driving flow
of optofluidic systems and accelerating matter waves.
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